Defense & Military
Firehawk Aerospace Raises 60M to Scale 3D Printed Rocket Propellant Tech
Firehawk Aerospace secures $60M funding to accelerate 3D-printed rocket propellant production, enhancing defense supply chain resilience.
The defense technology sector has experienced a significant milestone with Firehawk Aerospace’s oversubscribed $60 million Series C funding round. This development not only underscores the growing investor interest in advanced rocket propulsion and additive manufacturing, but also highlights the strategic importance of resilient defense supply chains amidst evolving geopolitical tensions. Firehawk’s innovative 3D-printed solid rocket propellant technology, coupled with the entry of a strategic European investor, positions the company at the forefront of modernizing how critical munitions are produced and supplied to allied forces.
The investment round, led by 1789 Capital, a venture capital firm with partners such as Donald Trump Jr., marks the firm’s first foray into defense technology. Notably, the round also included Presto Tech Horizons (PTH), created through a partnership between Czech venture capital firm Presto Ventures and industrial conglomerate Czechoslovak Group (CSG). This partnership brings together American innovation and European industrial strength at a time when the ongoing conflict in Ukraine has exposed vulnerabilities in Western munitions supply chains. Firehawk’s technology is poised to reduce production time for solid rocket motors from traditional periods of 60 days to just 7 hours, offering a transformative leap in efficiency and responsiveness.
The significance of this funding and partnership extends beyond financial backing. It signals a broader shift toward rapid, scalable, and secure defense Manufacturing, addressing urgent operational needs and reinforcing allied defense capabilities in an era of renewed great power competition.
Firehawk Aerospace was founded in 2019 by CEO Will Edwards and scientist Ronald Jones, combining business acumen with deep expertise in rocket propulsion and additive manufacturing. Edwards, a University of Arkansas graduate with prior entrepreneurial experience, and Jones, an expert in 3D printing and energetics, chose to focus on rocket engine manufacturing rather than entering the crowded launch vehicle market.
The company’s breakthrough lies in its proprietary 3D printing technology for solid rocket propellants. Traditional methods involve casting and curing propellant over weeks or months, but Firehawk’s approach enables the production of complex geometries in hours. This not only accelerates manufacturing but also allows for greater design flexibility and customization of rocket thrust profiles.
Firehawk’s business model targets the defense sector, where only two major incumbents, Aerojet Rocketdyne and Orbital ATK, dominate the Department of Defense’s rocket engine supply. Firehawk’s hybrid engines, which can be restarted mid-flight (unlike conventional solid motors), offer operational and safety advantages. The company operates from Dallas, with testing facilities in West Texas and a planned manufacturing expansion in Oklahoma, supported by $22 million in public funding.
Firehawk’s additive manufacturing (AM) approach enables the creation of propellants with intricate internal structures, optimizing burn characteristics and performance. Unlike conventional casting, which requires unique tooling for each design, AM allows engineers to iterate rapidly and produce propellant grains tailored to specific missions.
This innovation not only reduces production times dramatically but also enhances Safety by minimizing the handling of energetic materials at high temperatures. Research in the field has shown that traditional methods carry significant risks, including accidental detonations during processing. Firehawk’s process mitigates these hazards through controlled, automated printing techniques. The company’s technology has been validated through successful Test-Flights at NASA’s Stennis Space Center and ongoing collaborations with major defense contractors. Its ability to cut costs by 30-40% while improving performance and safety is a key differentiator in a market where responsiveness and reliability are paramount.
“A supply chain is only as strong as its weakest link, and propellant and energetics production are the biggest constraint on missile, rocket, and artillery manufacturing.” – Will Edwards, CEO, Firehawk Aerospace
The $60 million Series C round was oversubscribed, reflecting robust investor confidence in Firehawk’s technology and market potential. 1789 Capital, a venture firm with a focus on companies that align with traditional American values, led the round with a $15 million commitment. This marks a strategic expansion for 1789 Capital, which manages approximately $150 million and seeks to foster a “parallel economy” that emphasizes national security and deglobalization.
Other notable investors include Draper Associates, Boka Capital, Point Bridge Capital (known for its “MAGA ETF”), Decisive Point, and Stellar Ventures. The round brings Firehawk’s total funding to over $88 million, supporting its transition from R&D to full-scale production and addressing the critical need for rapid munitions manufacturing.
The entry of Presto Tech Horizons (PTH) as the sole European investor is particularly significant. PTH is a joint venture between Presto Ventures, a Prague-based VC fund, and CSG, a major Czech industrial conglomerate. This partnership aims to bridge American innovation with European manufacturing capabilities, enhancing supply chain resilience for NATO allies.
CSG, with over 10,000 employees and operations in more than 100 companies, is a leading player in European defense manufacturing. Its revenues are heavily defense-focused, and its acquisition of Italian ammunition manufacturer Fiocchi has further expanded its global footprint. The partnership with Firehawk is seen as a strategic move to address the urgent need for scalable, rapid munitions production in Europe, especially in light of the war in Ukraine.
Presto Ventures has a strong track record in technology investment, with a focus on security, defense, and aerospace. Its involvement brings not only capital but also access to a network of Western investors and defense customers. The collaboration is expected to facilitate technology transfer and the integration of Firehawk’s 3D-printed propellant technology into European manufacturing lines.
European defense planners are increasingly focused on supply chain sovereignty and resilience. The partnership with Firehawk addresses these concerns by enabling distributed, flexible production of rocket motors and energetics, reducing dependence on external suppliers and mitigating risks associated with geopolitical disruptions.
“Since the early 2010s, scientists and engineers have explored 3D printing as a way to unlock faster, safer, and more flexible solid propellant production. Firehawk is the first to truly deliver on that promise.” – Matej Luhovy, Partner, Presto Tech Horizons
Firehawk has built credibility within the defense sector through a series of government Contracts and partnerships. The company has received a $4 million TACFI contract from AFWERX for extended range optimization of solid rocket motors, and a Small Business Innovation Research (SBIR) Phase III contract with the Army Applications Laboratory. These programs focus on key weapon systems such as the Guided Multiple Launch Rocket (GMLR), Javelin, and Stinger missiles. The company’s approach to government relations includes active engagement with congressional appropriations and armed services committees, resulting in $5 million in congressional funding. This strategy recognizes the importance of aligning technological innovation with national security priorities and economic development objectives.
Firehawk’s competitive position is strengthened by its ability to offer hybrid rocket engines with restart capabilities and rapid production cycles. The concentration of traditional solid rocket motor manufacturing among a few incumbents creates opportunities for disruptive entrants like Firehawk. The company’s intellectual property portfolio and partnerships with established defense contractors further solidify its market standing.
The defense technology sector is undergoing rapid transformation, driven by evolving threat environments and technological breakthroughs. The Ukraine conflict has exposed critical vulnerabilities in Western munitions production, highlighting the limitations of “just-in-time” logistics and the need for surge manufacturing capacity.
The global hybrid rocket propulsion market is expanding, and additive manufacturing is gaining traction as a means to enhance supply chain flexibility and responsiveness. Firehawk’s technology aligns with these trends, offering a scalable solution to the challenges of modern defense logistics.
European and U.S. policy initiatives are increasingly focused on strengthening domestic and allied defense industrial bases. Investments in advanced manufacturing technologies like Firehawk’s are seen as essential for maintaining operational readiness and strategic autonomy in the face of evolving security challenges.
Firehawk Aerospace’s $60 million Series C funding round marks a turning point in defense manufacturing and international industrial cooperation. The company’s 3D-printed propellant technology addresses key supply chain vulnerabilities, offering unprecedented speed, flexibility, and cost-effectiveness in rocket motor production. The involvement of strategic investors from both the U.S. and Europe underscores the global relevance of Firehawk’s innovation.
As the company scales its operations and deepens its partnerships, it stands to play a pivotal role in enhancing allied defense capabilities and supply chain resilience. The future trajectory of Firehawk Aerospace will be closely watched by investors, policymakers, and defense officials as a bellwether for the successful integration of additive manufacturing in critical defense applications.
What is unique about Firehawk Aerospace’s technology? Who led Firehawk’s $60 million Series C investment round? How does the European partnership benefit Firehawk and its allies? What are the main applications of Firehawk’s technology? What government contracts has Firehawk secured?
Firehawk Aerospace Secures Strategic $60M Investment to Revolutionize Defense Supply Chain with 3D-Printed Propellant Technology
Company Foundation and Technological Innovation
Innovation in Additive Manufacturing
Investment Round Analysis and Strategic Partnerships
European Defense Supply Chain Implications
Government Contracts, Market Position, and Industry Context
Broader Defense Industry Trends
Conclusion
FAQ
Firehawk uses proprietary 3D printing techniques to manufacture solid rocket propellants, dramatically reducing production time and enabling greater design flexibility compared to traditional casting methods.
The round was led by 1789 Capital, with additional participation from Presto Tech Horizons, Draper Associates, Boka Capital, Point Bridge Capital, Decisive Point, and Stellar Ventures.
The partnership with Presto Tech Horizons and CSG facilitates technology transfer and integration into European defense manufacturing, enhancing supply chain resilience and supporting NATO defense capabilities.
The primary applications are in defense rocket motors, missiles, and potentially other energetics and propellants for both military and space sectors.
Firehawk has received contracts from AFWERX, the Army Applications Laboratory, and has partnerships with major defense contractors, including Raytheon Technologies.
Sources
Photo Credit: Firehawk
Defense & Military
Firehawk Aerospace Expands Rocket Motor Production in Mississippi Facility
Firehawk Aerospace acquires a DCMA-rated facility in Mississippi to boost production of solid rocket motors using 3D-printing technology.
This article is based on an official press release from Firehawk Aerospace.
On December 19, 2025, Firehawk Aerospace announced a significant expansion of its manufacturing capabilities with the acquisition of a specialized defense facility in Crawford, Mississippi. The Dallas-based defense technology company has secured a 20-year lease on the 636-acre site, which was formerly operated by Nammo Talley.
This acquisition marks a strategic pivot for Firehawk as it moves to address critical shortages in the U.S. defense supply chain. By taking over a facility that is already rated by the Defense Contract Management Agency (DCMA), the company aims to bypass the lengthy construction and certification timelines typically associated with greenfield defense projects. The site will serve as a hub for the full-system integration of solid rocket motors (SRMs), complementing the company’s existing R&D operations in Texas and energetics production in Oklahoma.
The Crawford facility is located in Lowndes County within Mississippi’s “Golden Triangle” region. According to the company’s announcement, the site is a “turnkey” defense asset designed specifically for handling high-grade explosives and munitions. The infrastructure includes assembly bays protected by one-foot-thick concrete walls and safety “blowout” walls designed to contain accidental detonations.
Because the facility was previously used by Nammo Defense Systems for the high-volume assembly of shoulder-launched munitions, such as the M72 LAW and SMAW systems, it retains the necessary regulatory certifications to allow for rapid operational ramp-up. Firehawk Aerospace CEO Will Edwards emphasized the urgency of this expansion in a statement regarding the deal.
“This acquisition strengthens Firehawk’s ability to address one of the nation’s most urgent defense challenges: rebuilding munition inventories that have been drawn down faster than they can be replaced.”
, Will Edwards, Co-founder and CEO of Firehawk Aerospace
The acquisition comes at a time when the Western defense industrial base is grappling with a severe shortage of solid rocket motors, which power critical systems like the Javelin, Stinger, and GMLRS missiles. Traditional manufacturing methods, which involve casting propellant in large batches that take weeks to cure, have created production bottlenecks.
Firehawk Aerospace intends to disrupt this model by utilizing proprietary 3D-printing technology to manufacture propellant grains. According to the press release, this additive manufacturing approach reduces production times from weeks to hours. The company has explicitly stated that the new Mississippi facility is being designed to achieve a production tempo of “thousands of rockets per month,” a significant increase over legacy industry standards. “While the current industrial base is built to produce thousands of rockets per year, we are building this site… to operate at a much higher production tempo… designing for throughput measured in thousands per month, not years.”
, Will Edwards, CEO
The expansion is expected to bring skilled jobs to the Golden Triangle region, which is increasingly becoming a hub for aerospace and defense activity. Mississippi Governor Tate Reeves welcomed the investments, noting the dual benefits of economic growth and national security support.
“Their acquisition in Crawford will bring skilled jobs to the region while directly contributing to the production capacity our nation needs.”
, Tate Reeves, Governor of Mississippi
From R&D to Mass Production: This acquisition signals Firehawk’s transition from a development-focused startup to a volume manufacturer. By securing a pre-rated facility, Firehawk has effectively shaved 2–3 years off its timeline, the period typically required to build and certify a new explosives handling site. This speed is critical given the current geopolitical demand for tactical munitions.
Supply Chain Decentralization: The move also highlights a strategy of decentralization. By distributing operations across Texas (R&D), Oklahoma (Energetics), and now Mississippi (Integration), Firehawk is building a supply chain that may prove more resilient than centralized legacy models. This geographic diversity also allows the company to tap into distinct labor markets and state-level incentives, such as Mississippi’s aerospace initiatives.
What is the significance of the DCMA rating? How does Firehawk’s technology differ from traditional methods? What was the facility used for previously?
Firehawk Aerospace Acquires Mississippi Facility to Scale Rocket Motor Production
Strategic Asset Details
Addressing the “Rocket Motor Crisis”
Regional Economic Impact
AirPro News Analysis
Frequently Asked Questions
A DCMA (Defense Contract Management Agency) rating verifies that a facility meets strict Department of Defense quality and safety standards. Acquiring a pre-rated facility allows Firehawk to begin production much faster than if they had to build and certify a new site from scratch.
Traditional solid rocket motors are cast in large batches, a process that requires weeks for the propellant to cure. Firehawk uses 3D-printing technology to print propellant grains, which allows for custom geometries and reduces the manufacturing time to mere hours.
The facility was formerly operated by Nammo Talley (now Nammo Defense Systems) for the assembly of shoulder-launched munitions, including the M72 LAW and SMAW systems.Sources
Photo Credit: Firehawk Aerospace
Defense & Military
20 Years of the F-22 Raptor Operational Capability and Upgrades
Lockheed Martin celebrates 20 years of the F-22 Raptor’s operational service, highlighting its stealth, combat roles, readiness challenges, and modernization.
Lockheed Martin has launched a campaign commemorating the 20th anniversary of the F-22 Raptor achieving Initial Operational Capability (IOC). In December 2005, the 27th Fighter Squadron at Langley Air Force Base in Virginia became the first unit to field the fifth-generation fighter, marking a significant shift in global air superiority.
According to the manufacturer’s announcement, the aircraft continues to define the benchmark for modern air combat. In a statement regarding the milestone, Lockheed Martin emphasized the platform’s enduring relevance:
“The F-22 Raptor sets the global standard for capability, readiness, and mission success.”
While the airframe was designed in the 1990s and first flew in 1997, the F-22 remains a central pillar of U.S. air power. The fleet, which consists of approximately 185 remaining aircraft out of the 195 originally built, has evolved from a pure air superiority fighter into a multi-role platform capable of ground strikes and strategic deterrence.
Since its operational debut, the F-22 has maintained a reputation for dominance, primarily established through high-end military aircraft exercises rather than direct air-to-air combat against manned aircraft.
Data from the U.S. Air Force and independent observers highlights the discrepancy between the Raptor’s exercise performance and its real-world combat engagements. During the 2006 Northern Edge exercise, its first major test after becoming operational, the F-22 reportedly achieved a 108-to-0 kill ratio against simulated adversaries flying F-15s, F-16s, and F/A-18s.
Despite this lethality in training, the aircraft’s combat record is distinct. The F-22 made its combat debut in September 2014 during Operation Inherent Resolve, conducting ground strikes against ISIS targets in Syria. To date, the aircraft has zero confirmed kills against manned enemy aircraft. Its sole air-to-air victory occurred in February 2023, when an F-22 utilized an AIM-9X Sidewinder missile to down a high-altitude Chinese surveillance balloon off the coast of South Carolina.
The primary driver of the F-22’s longevity is its low observable technology. Defense analysts estimate the Raptor’s Radar Cross Section (RCS) to be approximately 0.0001 square meters, roughly the size of a steel marble. This makes it significantly stealthier than the F-35 Lightning II and orders of magnitude harder to detect than foreign competitors like the Russian Su-57 or the Chinese J-20.
While Lockheed Martin’s anniversary campaign highlights “readiness” as a key pillar of the F-22’s legacy, recent Air Force data suggests a more complex reality regarding the fleet’s health. We note that maintaining the world’s premier stealth fighter comes at a steep logistical cost. According to data published by Air & Space Forces Magazine regarding Fiscal Year 2024, the F-22’s mission capable (MC) rate dropped to approximately 40%. This figure represents a decline from roughly 52% in the previous fiscal year and indicates that, at any given time, fewer than half of the Raptors in the inventory are flyable and combat-ready.
This low readiness rate is largely attributed to the fragility of the aircraft’s stealth coatings and the aging avionics of the older airframes. The Air Force has previously attempted to retire 32 older “Block 20” F-22s used for training to divert funds toward newer programs, though Congress has blocked these efforts to preserve fleet numbers. The contrast between the jet’s theoretical dominance and its logistical availability remains a critical challenge for planners.
Contrary to earlier projections that might have seen the F-22 retired in the 2030s, the Air Force is investing heavily to keep the platform viable until the Next Generation Air Dominance (NGAD) fighter comes online.
In 2021, the Air Force awarded Lockheed Martin a $10.9 billion contract for the Advanced Raptor Enhancement and Sustainment (ARES) program. This decade-long modernization effort aims to update the fleet’s hardware and software.
According to budget documents for Fiscal Year 2026, the “Viability” upgrade package includes several key enhancements:
These investments suggest that while the F-22 is celebrating its past 20 years, the Air Force intends to rely on its capabilities well into the next decade.
Sources: Lockheed Martin, U.S. Air Force
Two Decades of the Raptor: Celebrating the F-22’s Operational Milestone
Operational History and Combat Record
Exercise Performance vs. Combat Reality
Stealth Capabilities
AirPro News Analysis: The Readiness Paradox
Modernization and Future Outlook
The ARES Contract and Upgrades
Sources
Photo Credit: Lockheed Martin
Defense & Military
U.S. Navy Zero-G Helmet System Completes Critical Design Review
Collins Elbit Vision Systems completes design review for the Zero-G Helmet Display, reducing pilot weight load and enhancing safety for Navy aircraft.
This article is based on an official press release from Collins Elbit Vision Systems (RTX).
Collins Elbit Vision Systems (CEVS), a joint venture between RTX’s Collins Aerospace and Elbit Systems of America, has officially announced the completion of the Critical Design Review (CDR) for the Zero-G Helmet Mounted Display System+ (HMDS+). This milestone, finalized on December 12, 2025, marks a pivotal step in the U.S. Navy’s Improved Joint Helmet-Mounted Cueing System (IJHMCS) program.
The successful CDR effectively freezes the system’s design, confirming that the helmet meets the Navy’s rigorous requirements for safety, performance, and platform integration. With the design locked, the program now transitions into the airworthiness testing and integration phase, bringing the system closer to deployment aboard the F/A-18E/F Super Hornet and EA-18G Growler fleets.
According to the press release, the Zero-G HMDS+ is engineered to address long-standing physiological challenges faced by naval aviators while introducing “6th-generation” digital capabilities to existing 4.5-generation aircraft.
The Zero-G HMDS+ represents a significant departure from legacy analog systems. While previous iterations required pilots to physically attach heavy Night Vision Goggles (NVGs) for low-light operations, the new system integrates digital night vision directly into the visor. This integration streamlines cockpit operations and reduces the physical burden on the aircrew.
A primary driver for the Zero-G’s development is the reduction of head-borne weight. High-G maneuvers in fighter aircraft place immense strain on a pilot’s neck and spine, a hazard exacerbated by heavy, unbalanced legacy helmets. CEVS reports that the Zero-G system is more than 25 percent lighter than current market alternatives. Its name is derived from its optimized center of gravity, designed to minimize fatigue and long-term injury risks.
Capt. Joseph Kamara, the U.S. Navy Program Manager for Naval Aircrew Systems (PMA-202), emphasized the safety implications of the new design in a statement:
“Aircrew health and safety is our number one priority. The Zero-G being integrated through our IJHMCS program promises to relieve aircrew of neck and back strain and greatly improve ejection safety.”
Beyond ergonomics, the helmet utilizes a binocular waveguide display system. Unlike monocular reticles used in older models, this technology projects high-definition color symbology and video into both eyes, creating a fully immersive 3D view of the battlespace. The system is capable of “sensor fusion at the edge,” processing mission data and weapon information directly on the helmet to act as a primary flight instrument. Luke Savoie, President and CEO of Elbit Systems of America, highlighted the strategic necessity of this upgrade:
“Zero-G is providing sensor fusion at the edge… As fighter aircraft level-up, the HMDs of those systems need to as well.”
The Zero-G HMDS+ program has moved rapidly since CEVS was awarded a $16 million contract by the U.S. Navy in September 2023 for development and test support. Following the successful CDR in December 2025, the program is scheduled to undergo flight testing and Avionics integration throughout 2026 and 2027.
The U.S. Navy projects Initial Operational Capability (IOC) for the system in 2027. Once fielded, it is expected to equip aviators across the entire fleet of U.S. Navy and Royal Australian Air Force Super Hornets and Growlers, totaling more than 750 aircraft.
The completion of the CDR signals a critical maturity point for the Navy’s effort to modernize the human-machine interface in its tactical fleet. While much industry attention is focused on future platforms like NGAD (Next Generation Air Dominance), the Zero-G program illustrates the military’s commitment to maintaining the lethality and survivability of its existing backbone fleet.
By adapting technology originally matured for the F-35 Gen III helmet, CEVS is effectively retrofitting advanced situational awareness tools onto older airframes. This approach not only extends the combat relevance of the Super Hornet but also addresses the acute retention issue of pilot physical health. The shift to digital night vision and balanced weight distribution suggests that the Navy views pilot longevity as a critical component of fleet readiness.
Critical Design Review Completed for Navy’s Next-Gen Helmet
Technical Leap: The Zero-G HMDS+
Weight Reduction and Pilot Safety
Advanced Display Capabilities
Program Timeline and Deployment
AirPro News Analysis
Sources
Photo Credit: RTX
-
Commercial Aviation7 days agoAirbus Validates Critical Rendezvous Phase for Wake Energy Retrieval
-
Training & Certification7 days agoDiamond Aircraft Restarts European DA20i Production with First Delivery
-
Commercial Aviation6 days agoVietnam Grounds 28 Aircraft Amid Pratt & Whitney Engine Shortage
-
Business Aviation2 days agoGreg Biffle and Family Die in North Carolina Plane Crash
-
Defense & Military4 days agoFinland Unveils First F-35A Lightning II under HX Fighter Program
