Technology & Innovation
Hybrid Air Vehicles Launches US Subsidiary for Airlander 10 Operations
UK aerospace firm expands to America with hybrid airship technology targeting defense, surveillance, and eco-friendly transport markets.
On July 10, 2025, Hybrid Air Vehicles Ltd (HAV), a UK-based aerospace innovator, announced the formation of HAV USA, a strategic move to establish a stronger presence in the American market. This decision reflects increasing interest in HAV’s Airlander aircraft from U.S. government agencies, defense contractors, and commercial operators. The new subsidiary, headquartered in the United States, will be led by John Schumacher, a seasoned aerospace leader with experience at NASA and Aerojet Rocketdyne.
The expansion marks a significant milestone for HAV and its flagship aircraft, the Airlander 10, a hybrid airship that combines lighter-than-air and aerodynamic technologies. With capabilities ranging from long-endurance surveillance to low-emission cargo and passenger transport, Airlander 10 is poised to serve multiple sectors, from national defense to humanitarian logistics. Establishing HAV USA also positions the company to better engage with U.S. stakeholders and streamline access to procurement and Partnerships opportunities.
This article explores the background of Hybrid Air Vehicles, the technological advancements behind Airlander 10, the rationale for entering the U.S. market, and the broader implications for the aerospace industry.
The Airlander 10 is a unique aircraft that blends aerostatic lift from helium with aerodynamic lift generated by its hull shape and Propulsion system. This hybrid design allows it to carry out missions that conventional aircraft or helicopters may struggle with, such as long-duration surveillance or landing in remote areas without runways. The aircraft can remain airborne for up to five days and is capable of transporting over 100 passengers or 10 tonnes of cargo.
Its modular payload bay enables rapid reconfiguration for different missions, including surveillance, communications, and humanitarian aid. The aircraft’s vectran hull, a high-strength synthetic fabric, houses four diesel-electric engines that provide vectored thrust, enhancing maneuverability and stability. These features make the Airlander 10 particularly suited for operations in challenging environments, such as disaster zones or remote regions lacking infrastructure.
HAV is also exploring future Propulsion options, including Hydrogen fuel cells, to further reduce emissions. The current design already offers up to 90% lower emissions compared to conventional aircraft, aligning with global efforts to decarbonize aviation.
“Airlander will provide capabilities vital to U.S. national security and commerce.”, John Schumacher, President, HAV USA
The Airlander 10’s endurance and payload flexibility make it a valuable platform for defense and surveillance. It can support persistent intelligence, surveillance, and reconnaissance (ISR) missions, providing a stable platform for sensors and communication equipment. The aircraft’s ability to loiter at high altitudes for extended periods offers strategic advantages in border monitoring and maritime patrol.
In humanitarian contexts, Airlander can deliver critical supplies to disaster-stricken areas without needing traditional airstrips. This capability is particularly relevant for emergency response operations, where rapid deployment and access to isolated regions are crucial. Additionally, the aircraft’s low noise profile and minimal environmental footprint make it suitable for ecological and scientific missions. Commercially, the Airlander 10 offers potential in regional passenger transport and cargo logistics. Its ability to operate from unprepared surfaces and deliver goods point-to-point could reduce reliance on ground infrastructure, especially in developing regions or during emergencies.
The creation of HAV USA reflects HAV’s intent to deepen its engagement with American stakeholders. The U.S. market presents considerable opportunities for Airlander, particularly in defense, disaster response, and low-emission transport. By establishing a local presence, HAV can better align with U.S. regulatory frameworks, participate in government procurement programs, and collaborate more effectively with domestic partners.
Leading the new subsidiary is John Schumacher, a former NASA official with extensive experience in aerospace and defense. His leadership is expected to guide HAV USA through strategic Partnerships and government engagement, leveraging his background in international cooperation and space exploration.
CEO Tom Grundy emphasized the importance of this move, stating that it marks a new chapter in HAV’s international journey. The company aims to unlock new opportunities in the Americas and expand its global footprint through this initiative.
The U.S. Department of Defense has shown growing interest in hybrid airship technology, particularly for persistent surveillance and logistics in remote or contested environments. Airlander’s ability to operate without runways and its extended endurance make it a strong candidate for such missions. The establishment of HAV USA could facilitate closer collaboration with defense agencies and prime contractors.
In addition to defense, HAV USA is expected to explore Partnerships with commercial operators and regional governments. The aircraft’s low emissions and infrastructure-light operations align with U.S. goals for sustainable transportation and climate resilience. Potential applications include regional air mobility, remote infrastructure support, and emergency response logistics.
HAV’s expansion into the U.S. also positions it to compete with other hybrid airship developers, such as Lockheed Martin and LTA Research. HAV’s advantage lies in its advanced development stage and flight-tested platform, giving it a potential lead in Certification and deployment.
Hybrid Air Vehicles’ decision to establish a U.S. subsidiary is a strategic response to rising demand for versatile, low-emission aircraft capable of serving diverse sectors. The Airlander 10, with its hybrid lift technology and modular design, represents a significant innovation in aerospace. Its potential applications in defense, humanitarian aid, and commercial transport make it a versatile solution for modern challenges. As HAV USA begins operations under John Schumacher’s leadership, the company is well-positioned to capitalize on opportunities in the American market. The move also underscores the growing relevance of hybrid airships in addressing global transportation and security needs. With continued development and collaboration, Airlander may play a key role in the future of sustainable aviation.
What is the Airlander 10? Why did HAV establish a U.S. subsidiary? What are the main uses of Airlander 10?
Hybrid Air Vehicles Expands into the U.S.: Airlander 10 and the Future of Hybrid Aviation
The Airlander 10: A Hybrid Approach to Modern Aviation
Design and Capabilities
Applications in Defense, Surveillance, and Humanitarian Aid
Strategic Expansion into the U.S. Market
Establishing HAV USA
Implications for Defense and Industry Collaboration
Conclusion
FAQ
The Airlander 10 is a hybrid airship developed by Hybrid Air Vehicles. It combines helium-based lift with aerodynamic design and can carry over 100 passengers or 10 tonnes of cargo.
HAV USA was created to strengthen ties with U.S. government and industry partners, support defense and commercial opportunities, and expand the market for Airlander aircraft in the Americas.
Airlander 10 can be used for defense surveillance, disaster response, cargo transport, passenger travel, and scientific missions due to its endurance, payload flexibility, and runway-independent operation.
Sources
Photo Credit: Hybrid Air Vehicles
Technology & Innovation
Wave Function Ventures Invests in Natilus Blended-Wing-Body Aircraft
Wave Function Ventures invests in Natilus to support BWB aircraft development, including Kona cargo and Horizon passenger models with strong order backlog.
This article is based on an official press release from Wave Function Ventures and Natilus, with additional context from company reports.
On February 17, 2026, Wave Function Ventures® (WaveFx®) announced a strategic investment in Natilus, the San Diego-based aerospace company designing Blended-Wing-Body (BWB) aircraft. This capital injection is part of Natilus’s Series A funding round, which has raised approximately $28 million to date under the leadership of Draper Associates.
The investment signals growing confidence in hardware-focused “Deep Tech” solutions for aviation sustainability. According to the announcement, the funding will support the manufacturing of Natilus’s regional cargo-aircraft prototype, the Kona, and advance the engineering of its passenger program, the Horizon. By moving away from the traditional “tube-and-wing” design, Natilus aims to deliver aircraft that offer significantly higher internal volume and fuel efficiency while utilizing existing airport infrastructure.
Wave Function Ventures joins a syndicate of investors including Flexport, Type One Ventures, The Veteran Fund, and New Vista Capital. The firm, known for its “atoms over bits” investment thesis, focuses on engineering-led startups solving physical-world problems in aerospace, defense, and energy.
Al Peters, Founder of Wave Function Ventures, emphasized the pragmatic nature of the Natilus design in a statement regarding the investment:
“We see an incredible convergence. It’s smart engineering that helps the planet by cutting emissions while integrating into existing airport infrastructure. Our investment in Natilus supports founders building technology that makes a real difference.”
The partnership aligns with the broader industry push to decarbonize. Aviation currently contributes approximately 3% of global CO₂ emissions, and traditional airframe designs have reached a plateau in efficiency gains. Natilus claims its BWB architecture can reduce emissions by 50% and fuel consumption by 30% compared to current aircraft.
The core of Natilus’s innovation is the Blended-Wing-Body design, where the fuselage and wings merge into a single lifting body. This configuration reduces aerodynamic drag by roughly 30% and provides 40% more cargo volume than traditional aircraft of the same weight class.
Aleksey Matyushev, CEO of Natilus, highlighted the company’s modern approach to development: “Our digital-first engineering approach reduces reliance on costly prototypes without compromising safety. We’re not just designing aircraft, we’re future-proofing logistics.”
According to company data, Natilus is developing two primary aircraft models to address different segments of the market:
Natilus reports significant commercial traction for these models, citing an order backlog of over 570 aircraft valued at more than $24 billion. Commitments have been secured from major operators including Ameriflight, Volatus Aerospace, and Flexport.
The “Step-Stone” Strategy to Certification Infrastructure Compatibility What is a Blended-Wing-Body (BWB) aircraft? Who are the key investors in Natilus? When will Natilus aircraft fly? Is the Natilus Kona autonomous?
Wave Function Ventures Backs Natilus to Accelerate Blended-Wing-Body Aircraft Development
Strategic Investment in Sustainable Aviation
The Blended-Wing-Body Advantage
Aircraft Program Specifications
AirPro News Analysis
The investment by Wave Function Ventures highlights a critical strategic differentiator for Natilus: the decision to prioritize an uncrewed cargo aircraft (Kona) before attempting a passenger liner. By validating the BWB airframe in the cargo market, where regulatory hurdles for autonomy and new airframes may be navigated differently than in passenger travel, Natilus can generate revenue and flight data to de-risk the larger Horizon program.
One of the historical barriers to BWB adoption has been airport compatibility. Radical new shapes often require new gates or hangars. However, Natilus has explicitly engineered its fleet to fit existing gates and maintenance facilities. This “drop-in” capability is likely a key factor driving the $24 billion backlog, as it allows operators to adopt the technology without lobbying for massive infrastructure overhauls at major hubs.
Frequently Asked Questions
A BWB is an aircraft design where the wings and body are merged into a single lifting shape. This differs from the traditional “tube-and-wing” design (a cylinder with attached wings) and offers superior aerodynamics and internal volume.
The Series A round was led by Draper Associates. Other key investors include Wave Function Ventures, Flexport, Type One Ventures, The Veteran Fund, and New Vista Capital.
The Kona cargo prototype is expected to fly by approximately 2028. The Horizon passenger aircraft is targeted for service entry in the early 2030s.
Yes, the Kona is designed as a regional autonomous or remote-piloted freighter, intended to serve feeder cargo routes.
Sources
Photo Credit: Wave Function Ventures
Technology & Innovation
Collins Aerospace SkyNook Named 2026 Crystal Cabin Award Finalist
Collins Aerospace’s SkyNook suite, designed to utilize unused aft cabin space, is a finalist for the 2026 Crystal Cabin Awards in Passenger Comfort.
This article is based on an official press release from Collins Aerospace.
On February 17, 2026, Collins Aerospace, a business of RTX, announced that its new cabin concept, the “SkyNook” suite, has been named a finalist for the 2026 Crystal Cabin Awards. Competing in the “Passenger Comfort” category, the product is designed to monetize underutilized space on widebody Commercial-Aircraft while providing enhanced amenities for families, pet owners, and travelers with sensory sensitivities.
The winners of the prestigious awards are scheduled to be announced on April 14, 2026, at the Aircraft Interiors Expo in Hamburg, Germany. According to the company’s announcement, the SkyNook aims to solve a longstanding engineering challenge regarding the tapering fuselage at the rear of aircraft.
The primary engineering innovation behind the SkyNook is its placement. In widebody aircraft, the fuselage narrows toward the tail, often making standard seat rows impossible to install efficiently. This creates gaps between seats and the sidewall, historically referred to as “dead space” or used merely for storage.
Collins Aerospace has developed SkyNook to convert this area into a revenue-generating product. By utilizing this specific footprint, Airlines can offer a semi-private retreat without removing existing revenue seats. In their official statement, the company described the core function of the suite:
“The SkyNook suite transforms unused space into a flexible, semi-private retreat at the aft of a widebody aircraft.”
, Collins Aerospace Press Release
According to the product details released by Collins Aerospace, the suite is modular and includes specific features designed to accommodate passengers who often struggle in standard economy seating. The suite features a convertible console capable of securing various items that are typically difficult to manage in a standard row.
The Manufacturers highlights that the console is explicitly designed to hold: Additionally, the suite includes a deployable privacy divider. This barrier visually separates the occupants from the aisle, providing a shield against the high foot traffic often found near rear lavatories and galleys. This feature is marketed not only for privacy but also as a solution for neurodivergent passengers or those with sensory sensitivities who require a “calm zone” dampened from cabin noise and visual overstimulation.
The Crystal Cabin Awards are widely regarded as the leading international accolade for excellence in aircraft interior innovation. SkyNook’s nomination in the “Passenger Comfort” category places it alongside other major industry players.
According to award nomination details, SkyNook is competing against distinct concepts that highlight different strategies for cabin utilization:
While competitors are refining existing class structures, either ultra-luxury or sustainable economy, Collins Aerospace is attempting to create a new ancillary revenue stream by capitalizing on previously wasted floor space.
The Push for Inclusive Revenue Generation
The nomination of the SkyNook highlights two converging trends in the 2026 Market-Analysis: the aggressive pursuit of ancillary revenue and the demand for inclusive design. Airlines are under immense pressure to maximize yield per square inch of the cabin. Historically, the aft taper has been a liability; Collins Aerospace is proposing a solution that turns this liability into a premium “economy-plus” product.
Furthermore, the explicit inclusion of design elements for service animals and sensory-sensitive travelers suggests a shift in how manufacturers view “comfort.” It is no longer just about legroom; it is about accessibility. By creating a dedicated space for these demographics, airlines can potentially reduce friction in the boarding process and improve the travel experience for passengers with diverse needs, all while charging a premium for a space that was previously empty.
Sources: Collins Aerospace (RTX)
Collins Aerospace Named 2026 Crystal Cabin Award Finalist for SkyNook Concept
Transforming the Aft Cabin “Dead Zone”
Key Features and Target Demographics
Industry Context: The 2026 Crystal Cabin Awards
AirPro News Analysis
Sources
Photo Credit: RTX
Sustainable Aviation
SkyNRG Closes Financing for Europe’s First Standalone SAF Plant
SkyNRG reaches financial close for DSL-01, Europe’s first standalone SAF plant in the Netherlands, targeting full operations by mid-2028.
This article is based on an official press release from SkyNRG and accompanying project documentation.
SkyNRG has officially reached financial close for DSL-01, its first dedicated commercial-scale Sustainable Aviation Fuel (SAF) production facility. Located in Delfzijl, Netherlands, the project marks a significant milestone in the European aviation sector’s transition to renewable energy. According to the company’s announcement, construction on the facility has already commenced, with full operations targeted for mid-2028.
The DSL-01 project is distinguished as Europe’s first standalone greenfield SAF plant, meaning it is being built from the ground up rather than as an expansion of an existing fossil fuel refinery. Once operational, the facility is projected to produce 100,000 tonnes of SAF annually, alongside 35,000 tonnes of by-products including bio-propane and naphtha.
Maarten van Dijk, CEO and Co-Founder of SkyNRG, emphasized the strategic importance of this development in a statement regarding the launch:
“Reaching this important milestone… marks an important step in our transition to becoming an owner and operator of SAF production capacity. This milestone demonstrates growing market confidence in scalable SAF production and provides a model for future sustainable fuel projects globally.” The facility will utilize Topsoe’s HydroFlex™ technology, operating on the Hydroprocessed Esters and Fatty Acids (HEFA) pathway. SkyNRG has stated that the plant will process waste oils and fats,predominantly sourced from regional industries,and will explicitly exclude virgin vegetable oils such as palm or soy to avoid competition with food supplies. The project aims to deliver a lifecycle CO2 emissions reduction of more than 85% compared to fossil jet fuel.
Technip Energies has been awarded the Engineering, Procurement, and Construction (EPC) contract for the site. While specific contract values are often confidential, industry reports estimate the value between €500 million and €1 billion. The construction phase is expected to generate hundreds of jobs in the Groningen Seaports region, contributing to the area’s developing green industrial cluster.
A critical aspect of the DSL-01 project is its financial structure. It is the first commercial-scale SAF plant to secure non-recourse project financing, a move that signals increasing maturity in the SAF market. Under this structure, lenders are repaid based on the project’s future cash flow rather than the general assets of the parent company.
The investment consortium includes: Arjan Reinders, Head of Infrastructure Europe at APG, noted the alignment of this investment with broader sustainability goals:
“SkyNRG represents the first investment in the SAF sector on behalf of our client [ABP], which is closely aligned with our ambition to create impact by investing at the forefront in energy transition assets.” To ensure the commercial viability of the plant, SkyNRG has secured long-term offtake agreements. KLM Royal Dutch Airlines has committed to purchasing 75,000 tonnes of SAF annually for a period of 10 years. This volume represents three-quarters of the plant’s total SAF output and is essential for KLM to meet upcoming EU mandates under the ReFuelEU Aviation Regulation.
Additionally, SHV Energy has agreed to purchase the bioLPG (bio-propane) by-products produced by the facility. Shell, a strategic partner of SkyNRG since 2019, retains an option to purchase SAF from the plant and continues to provide technical and commercial expertise.
The successful financial close of DSL-01 represents a pivotal moment for the SAF industry, specifically regarding “bankability.” Historically, SAF projects have struggled to attract traditional project finance due to perceived technology and market risks. The willingness of a major banking syndicate to provide non-recourse debt suggests that financial institutions now view HEFA-based SAF production as a stable asset class.
Furthermore, the timing of this project aligns directly with the European Union’s “Fit for 55” regulatory package. With the ReFuelEU Aviation Regulation mandating a 2% SAF blend by 2025 and rising to 6% by 2030, the DSL-01 facility will come online just as demand pressures intensify. Unlike competitors expanding existing refineries, SkyNRG’s success with a standalone greenfield site provides a “proof of concept” that could accelerate the development of similar independent facilities globally, such as their planned projects in the United States and Sweden.
Sources:
SkyNRG Reaches Financial Close on Europe’s First Standalone Greenfield SAF Plant
Project Specifications and Technology
Financial Structure and Investment Partners
Strategic Partnerships and Offtake Agreements
AirPro News Analysis
Photo Credit: SkyNRG
-
Regulations & Safety5 days agoFour Killed in Tennessee-Registered Plane Crash Near Steamboat Springs
-
Regulations & Safety3 days agoJet2 Flight Diverts to Brussels After Violent Midair Altercation
-
Business Aviation6 days agoBombardier Exceeds 2025 Targets and Projects $10B Revenue in 2026
-
Business Aviation7 days agoBombardier Secures Major Challenger 3500 Order from Vista Global
-
Regulations & Safety6 days agoArik Air Boeing 737-700 Diverts to Benin After Engine Failure
