Space & Satellites
Russian Cosmonaut Removed from SpaceX Crew-12 Over Security Breach
Oleg Artemyev was removed from SpaceX Crew-12 for alleged ITAR violations photographing sensitive SpaceX tech; replaced by Andrey Fedyaev.
This article summarizes reporting by The Insider and United24 Media.
In a significant development for international space cooperation, Russian cosmonaut Oleg Artemyev has been removed from the upcoming SpaceX Crew-12 mission to the International Space Station (ISS). While official channels cite a routine career move, investigative reporting suggests the removal stems from a serious violation of U.S. export control laws involving unauthorized photography of sensitive Space-Agencies technology.
According to reporting by The Insider and United24 Media, the incident occurred at SpaceX headquarters in Hawthorne, California, in late November 2025. The mission, targeting a launch in February 2026, will proceed with a replacement cosmonaut, Andrey Fedyaev, taking the empty seat. The abrupt change in personnel less than three months before Launch has raised questions regarding security protocols within the NASA-Roscosmos “seat-swap” program.
The core of the controversy involves the alleged mishandling of proprietary technology protected under the International Traffic in Arms Regulations (ITAR). Sources cited by The Insider claim that during a training session, Artemyev used a personal smartphone to photograph confidential internal documents and SpaceX rocket engines. These images were reportedly removed from the secure facility, constituting a potential “deemed export” violation under U.S. law.
ITAR regulations are notoriously strict regarding foreign nationals. Merely exposing technical data to a non-U.S. person can be considered an export; photographing and removing that data is a severe breach. Launch analyst Georgy Trishkin, referenced in the reports, noted that removing a crew member this close to a mission without a medical justification is highly irregular, pointing toward a significant infraction rather than a standard administrative change.
There is a distinct divergence between the explanation provided by the Russian state space corporation and the details emerging from investigative journalists.
Roscosmos has publicly downplayed the event, attributing the personnel change to a career transition. In a statement regarding Artemyev’s removal, the agency said:
“In connection with his transfer to another job.”
, Roscosmos official statement
As of this writing, neither NASA nor SpaceX has issued a detailed public comment confirming the specific allegations. This silence is consistent with standard operating procedures during active interagency investigations, particularly those involving sensitive ITAR compliance and international diplomatic partners.
Oleg Artemyev is a veteran cosmonaut with significant experience, having logged 560 days in orbit across three previous ISS missions. However, his tenure has not been without political controversy. He currently serves as a deputy in the Moscow City Duma representing the “United Russia” party.
In July 2022, Artemyev drew international condemnation from NASA and the European Space Agency (ESA) after he and fellow cosmonauts posed with anti-Ukraine propaganda flags aboard the ISS. This prior conduct, combined with the new allegations of security breaches at SpaceX, complicates the narrative of his sudden departure from the Crew-12 manifest.
To ensure the Crew-12 mission remains on schedule for early 2026, Roscosmos has appointed Andrey Fedyaev as the replacement. Fedyaev is considered a logical choice to minimize training delays; he previously flew on the SpaceX Crew-6 mission between March and September 2023. His familiarity with the Dragon spacecraft systems allows for a rapid integration into the crew, mitigating the operational impact of Artemyev’s removal.
The removal of a high-profile Russian cosmonaut from a U.S. commercial spacecraft highlights the fragility of the current “seat-swap” agreement. While the partnership was designed to ensure mixed crews on both Soyuz and Dragon vehicles for safety redundancy, incidents like this test the limits of technical cooperation amidst geopolitical tension.
From an operational standpoint, the breach raises serious questions about internal security enforcement at SpaceX. If the allegations are accurate, the ability of a foreign national to bring a recording device into a restricted area and photograph propulsion technology suggests a lapse in protocol that U.S. authorities will likely scrutinize heavily. However, the swift appointment of Fedyaev suggests that both NASA and Roscosmos are prioritizing the continuity of ISS operations over a prolonged diplomatic standoff.
What is ITAR? When is SpaceX Crew-12 scheduled to launch? Has Oleg Artemyev been banned from future flights?
Russian Cosmonaut Removed from SpaceX Crew-12 Following Alleged Security Breach
Allegations of ITAR Violations
Official Narratives vs. Reported Reality
Roscosmos Statement
Silence from U.S. Partners
Background: Oleg Artemyev
The Replacement: Andrey Fedyaev
AirPro News Analysis
Frequently Asked Questions
The International Traffic in Arms Regulations (ITAR) is a U.S. regulatory regime that controls the manufacture, sale, and distribution of defense and space-related articles and services. It strictly limits access to sensitive technology by foreign nationals.
The mission is currently targeting a launch in February 2026.
While Roscosmos has only stated he is transferring to another job, ITAR violations can carry penalties including permanent bans from accessing U.S. aerospace facilities, which would effectively prevent him from flying on U.S. vehicles or training at NASA facilities in the future.
Sources
Photo Credit: Lobachevsky University
Space & Satellites
Lockheed Martin Awarded $1.1B Contract for SDA Tranche 3 Satellites
Lockheed Martin secured a $1.1B contract to build 18 Tranche 3 satellites for the Space Development Agency’s missile tracking and defense network.
This article is based on an official press release from Lockheed Martin.
Lockheed Martin (NYSE: LMT) has been awarded a major contract with a potential value of approximately $1.1 billion by the Space-Agencies (SDA). Announced on December 19, 2025, the agreement tasks the aerospace giant with producing 18 space vehicles for the Tranche 3 Tracking Layer (TRKT3) constellation. These satellites are a critical component of the Proliferated Warfighter Space Architecture (PWSA), a network designed to detect, track, and target advanced missile threats, including hypersonic systems.
This award represents a significant portion of a broader $3.5 billion investment by the SDA, which simultaneously issued Contracts to Rocket Lab, Northrop Grumman, and L3Harris. Together, these companies will construct a combined total of 72 satellites. According to the announcement, Lockheed Martin’s specific allotment of satellites is scheduled for launch in Fiscal Year 2029.
Under the terms of the agreement, Lockheed Martin will deliver 18 missile warning, tracking, and defense space vehicles. Unlike traditional legacy programs that often take a decade to field, the SDA operates on a rapid “spiral development” model, fielding new generations, or “tranches”, every two years. Tranche 3 is particularly significant as it represents the “Sustained Capability” generation, designed to replenish and replace earlier satellites while introducing advanced fire-control capabilities.
The satellites will be manufactured at Lockheed Martin’s SmallSat Processing & Delivery Center in Colorado. The company confirmed that Terran Orbital will continue to serve as a key supplier, providing the satellite buses. This continuation of the supply chain partnership aims to maintain production stability across the various tranches.
A defining feature of the Tranche 3 Tracking Layer is the inclusion of “fire-control quality” tracking. While previous iterations focused primarily on warning and tracking, half of the payloads in this new constellation are designated for missile defense. This means the satellites can generate data precise enough to guide an interceptor to destroy a threat, rather than simply monitoring its trajectory.
“The Tracking Layer of Tranche 3… will significantly increase the coverage and accuracy needed to close kill chains against advanced adversary threats. The constellation will include a mix of missile warning and missile tracking, with half the constellation’s payloads supporting advanced missile defense missions.”
Gurpartap “GP” Sandhoo, Acting Director, Space Development Agency
With this latest award, Lockheed Martin’s total backlog with the SDA has grown to 124 space vehicles across multiple tranches. This reinforces the company’s position as a dominant player in the rapid-acquisition space sector. The SDA’s strategy involves splitting awards among multiple vendors to foster competition and reduce industrial base risk. The $3.5 billion total funding for Tranche 3 was distributed as follows:
Lockheed Martin and Rocket Lab received higher contract values, which industry analysts attribute to the complexity of the defense-specific payloads included in their respective lots.
“Lockheed Martin’s ongoing investments and evolving practices demonstrate our commitment to supporting the SDA’s Proliferated Warfighter Space Architecture. These innovative approaches position Lockheed Martin to meet the warfighter’s urgent need for a proliferated missile defense constellation.”
Joe Rickers, Vice President of Transport, Tracking and Warning, Lockheed Martin
The awarding of the Tranche 3 contracts highlights a pivotal shift in U.S. defense strategy toward “proliferated” architectures. By deploying hundreds of smaller, cheaper satellites rather than a handful of large, expensive targets (“Big Juicy Targets”), the U.S. Space Force aims to increase resilience against anti-satellite weapons. If an adversary destroys one node in a mesh network of hundreds, the system remains operational.
Furthermore, the explicit mention of “fire-control quality tracks” signals that the PWSA is moving from a passive observation role to an active engagement support role. This is a direct response to the development of hypersonic glide vehicles by peer adversaries, which fly too low for traditional ground-based Radar-Systems to track effectively. The reliance on Terran Orbital for satellite buses also underscores the critical nature of supply chain continuity; as production rates increase to meet the two-year launch cycles, prime contractors are prioritizing established supplier relationships to minimize delay risks.
Lockheed Martin Secures $1.1 Billion Contract for SDA Tranche 3 Tracking Layer
Contract Specifications and Deliverables
Advanced Fire-Control Capabilities
Strategic Context and Industry Landscape
AirPro News Analysis
Frequently Asked Questions
Sources
Photo Credit: Lockheed Martin
Space & Satellites
Venturi Space Completes Driving Tests for MONA-LUNA Lunar Rover
Venturi Space successfully tests MONA-LUNA lunar rover at ESA’s LUNA facility, validating key mobility and wheel tech for a 2030 Moon mission.
This article is based on an official press release from Venturi Space.
Venturi Space has announced the successful completion of the first driving tests for its MONA-LUNA lunar rover. Conducted at the European Space Agency’s (ESA) newly inaugurated LUNA analog facility in Cologne, Germany, these tests mark a pivotal step in Europe’s roadmap toward autonomous lunar exploration. The rover, designed to be “100% European,” demonstrated its capability to navigate loose regolith and steep inclines, validating key technologies intended for a targeted 2030 mission to the Moon’s South Pole.
According to the company’s announcement, the tests focused on mobility, obstacle traversal, and the durability of onboard electronic systems under simulated lunar conditions. The successful campaign confirms the viability of Venturi’s proprietary wheel technology and sets the stage for further development leading up to integration with the European Argonaut lander.
The testing campaign took place at the LUNA facility, a joint operation by ESA and the German Aerospace Center (DLR) that opened in September 2024. The facility features a 700-square-meter hall filled with 900 tonnes of regolith simulant, volcanic powder derived from the Eifel region, designed to mimic the surface of the Moon. The environment also replicates the unique lighting conditions of the lunar South Pole, providing a high-fidelity testing ground for robotic systems.
Venturi Space reports that the MONA-LUNA rover exceeded initial performance targets during these Test-Flights. Specifically, the vehicle successfully climbed slopes of up to 33 degrees and navigated large rocky obstacles without losing traction. A primary objective was to verify that the rover would not sink into the loose soil, a common hazard in lunar exploration.
A critical component validated during these tests was the rover’s “hyper-deformable” wheel technology. Invented by Venturi, these wheels are designed to absorb shocks and maximize the contact patch with the ground, providing necessary grip on soft, unstable surfaces. Dr. Antonio Delfino, Director of Space Affairs at Venturi Space, emphasized the importance of this validation.
“The main objective… was to validate the rover’s mobility in conditions representative of a lunar surface, with a particular focus on the interaction between its hyper-deformable wheels and a highly realistic regolith simulant.”
Dr. Antonio Delfino, Venturi Space
The MONA-LUNA is engineered to serve as a logistics and exploration vehicle capable of surviving the harsh lunar environment. According to technical details released by Venturi Space, the rover weighs approximately 750 kg, with the capacity to extend to 1,000 kg depending on specific mission payloads. It is capable of speeds up to 20 km/h (approximately 12.4 mph). The vehicle is electrically powered, utilizing solar panels and three high-performance batteries. Crucially, the rover is built to endure the extreme thermal variations of the lunar cycle, with a stated operating range of -240°C to +110°C. It is equipped with a robotic arm for scientific tasks and is designed to carry cargo or, in emergency scenarios, an astronaut.
The development of MONA-LUNA represents a strategic shift toward European independence in space logistics. Currently, much of the global lunar infrastructure relies on non-European Partnerships. By developing a sovereign rover capable of launching on an Ariane 6 rocket and landing via the European Argonaut lander (developed by Thales Alenia Space), Europe is securing its own access to the lunar surface.
This autonomy is further supported by Venturi’s industrial expansion. The company plans to open a new 10,000-square-meter facility in Toulouse, France, by 2028. This factory will employ approximately 150 engineers dedicated to the Manufacturing of the MONA-LUNA, signaling a long-term industrial commitment beyond the initial prototype phase.
While the MONA-LUNA is targeted for a 2030 launch, Venturi Space has outlined an incremental approach to technology validation. Before the full-sized rover reaches the Moon, a smaller “sister” rover named FLIP (FLEX Lunar Innovation Platform) is scheduled to launch in 2026.
Developed in partnership with the U.S. company Venturi Astrolab, FLIP will fly on a commercial mission with Astrobotic. This earlier mission will serve as a “pathfinder,” testing the same batteries and wheel technologies in the actual lunar environment four years before the MONA-LUNA mission. Gildo Pastor, President of Venturi Space, expressed confidence in the current progress following the Cologne tests.
“Seeing MONA LUNA operate on the legendary LUNA site is a profound source of pride… We know we have only completed 1% of the journey that, I hope, will take us to the Moon.”
Gildo Pastor, President of Venturi Space
The successful completion of these driving tests at the LUNA facility confirms that the foundational mobility technologies required for Europe’s 2030 lunar ambitions are now operational in a relevant environment.
Venturi Space Successfully Tests “MONA-LUNA” Rover at ESA’s New Lunar Facility
Validating Mobility in a Simulated Lunar Environment
Performance of Hyper-Deformable Wheels
Technical Specifications and Mission Profile
AirPro News Analysis: The Push for European Autonomy
Future Roadmap: From FLIP to MONA-LUNA
Sources
Photo Credit: Venturi Space
Space & Satellites
Skyroot Aerospace Sets Launch Window for Vikram-1 Orbital Rocket
Skyroot Aerospace prepares for Vikram-1’s maiden orbital launch in early 2026 from Sriharikota, focusing on tech validation with reduced payload.
This article summarizes reporting by India Today and Sibu Tripathi.
Skyroot Aerospace, India’s pioneering private space technology firm, has commenced final preparations for the maiden orbital launch of its Vikram-1 rocket. According to reporting by India Today, the launch vehicle has been transported to the Satish Dhawan Space Centre (SDSC) in Sriharikota, with the company targeting a Launch window within the next two months.
This mission marks a critical transition for the Hyderabad-based company, moving from suborbital demonstration to full orbital capability. While the primary goal is reaching Low Earth Orbit (LEO), company leadership has emphasized that the inaugural flight is primarily a validation exercise for their proprietary technology.
As of mid-December 2025, the first stage of the Vikram-1 rocket has arrived at the spaceport in Sriharikota. India Today reports that integration and assembly operations are currently underway at the launch site. Skyroot co-founder Bharath Daka indicated that all subsystems are expected to be ready within approximately one month, followed by a final round of validation checks.
Based on this timeline, the launch is projected to occur in early 2026 (January or February). This schedule aligns with the company’s rapid development pace following the inauguration of their new Manufacturing facility, the Infinity Campus, in November 2025.
Maiden flights of new orbital class rockets carry significant risk, a reality Skyroot leadership is openly acknowledging. To mitigate potential losses, the rocket will carry a reduced payload. India Today notes that the vehicle will fly with approximately 25% of its maximum payload capacity to de-risk the mission.
While orbital insertion is the ultimate objective, the company has set incremental benchmarks for success. Speaking to India Today, Bharath Daka emphasized that surviving the initial phases of flight would be a major technical victory.
“We will consider the mission a meaningful achievement even if the rocket simply clears the launch tower,” Daka told India Today.
In addition to clearing the tower, the engineering team is focused on the vehicle surviving “Max-Q”, the point of maximum aerodynamic pressure, and successfully executing stage separation. These milestones provide critical data for future iterations, regardless of whether the final orbit is achieved on the first attempt. The Vikram-1 represents a significant leap in complexity compared to its predecessor, the Vikram-S, which completed a suborbital test flight in November 2022. Unlike the single-stage suborbital demonstrator, Vikram-1 is a multi-stage launch vehicle designed for the commercial small satellite market.
The upcoming launch of Vikram-1 is a bellwether event for the Indian private space sector. Following the government’s liberalization of the space industry, Skyroot’s progress serves as a test case for India’s ability to foster a commercial ecosystem parallel to the state-run ISRO. If successful, Vikram-1 will position India as a competitive player in the global small satellite launch market, challenging established entities like Rocket Lab. The decision to lower public expectations by focusing on “clearing the tower” is a prudent communication Strategy, common among launch providers facing the high statistical failure rates of debut flights.
When will Vikram-1 launch? Where will the launch take place? What is the primary payload?
Launch Timeline and Status
Managing Expectations for the Maiden Flight
Defining Success
Technical Context: The Vikram-1 Vehicle
AirPro News Analysis
Frequently Asked Questions
According to current reports, the launch is targeted for early 2026, likely within January or February.
The mission will launch from the Satish Dhawan Space Centre (SDSC) in Sriharikota, India.
Specific payload details have not been fully disclosed, but the rocket will carry a reduced load (approx. 25% capacity) to minimize risk during this test flight.
Sources
Photo Credit: Skyroot Aerospace
-
Commercial Aviation7 days agoAirbus Validates Critical Rendezvous Phase for Wake Energy Retrieval
-
Training & Certification7 days agoDiamond Aircraft Restarts European DA20i Production with First Delivery
-
Commercial Aviation6 days agoVietnam Grounds 28 Aircraft Amid Pratt & Whitney Engine Shortage
-
Business Aviation2 days agoGreg Biffle and Family Die in North Carolina Plane Crash
-
Defense & Military4 days agoFinland Unveils First F-35A Lightning II under HX Fighter Program
