MRO & Manufacturing
TAT Technologies Secures Global APU MRO Deal with Major Cargo Carrier
Five-year agreement valued up to $55M expands aircraft maintenance services for global cargo fleets, aligning with APU market growth trends.
In a strategic move that strengthens its position in the aerospace maintenance sector, TAT Technologies has secured a five-year Maintenance, Repair, and Overhaul (MRO) agreement with a leading global cargo carrier. This deal extends an existing partnership for APU (Auxiliary Power Unit) maintenance on the carrier’s U.S. fleet of Boeing 767 and 757 aircraft to its global fleet, while adding support for Boeing 737, Airbus A300, and Boeing 777 platforms. The Boeing 777 APU contract, expected to be signed between May and June 2025, spans seven years. The total value of these contracts is estimated at US$40 million to US$55 million over five years, highlighting the scale of this collaboration.
This agreement underscores TAT Technologies’ growing leadership in the APU MRO market and reflects the increasing demand for reliable maintenance solutions in the aviation industry, particularly in the air cargo sector, which has seen robust growth post-pandemic. By expanding its service portfolio, TAT is positioning itself as a key player in meeting the global needs of aviation stakeholders.
Auxiliary Power Units (APUs) are critical aircraft components, providing electrical power and air conditioning when main engines are off. This is essential during ground operations such as boarding, maintenance, and taxiing. For cargo carriers, where quick turnaround times are vital, reliable APU performance is paramount.
APUs also enhance fuel efficiency and reduce emissions by allowing aircraft to use smaller engines for ground power. With growing environmental and regulatory pressures, maintaining APU efficiency is a priority for airlines and cargo operators, driving demand for specialized MRO services.
The aviation industry is increasingly outsourcing MRO services due to the complexity of modern aircraft systems and cost pressures. Partnering with specialized providers like TAT Technologies allows airlines and cargo carriers to focus on core operations while benefiting from expert technical support. The global aerospace MRO market is growing steadily, driven by demand for APU and engine maintenance, with cargo carriers requiring robust solutions to maintain high-utilization fleets.
This trend aligns with TAT Technologies’ strategy. By securing long-term contracts and expanding its APU MRO capabilities, the company is capitalizing on industry growth and reinforcing its role as a trusted partner.
This agreement marks a significant expansion of TAT Technologies’ partnership with a leading cargo carrier, extending services to the carrier’s global fleet and introducing new APU platforms: Boeing 737, Airbus A300, and Boeing 777. The Boeing 777 contract, set for signing in May–June 2025, will span seven years, complementing the five-year agreement for other platforms. This deal, delivered through TAT’s Piedmont Components Services subsidiary, enhances the company’s service portfolio and global reach.
Igal Zamir, President and CEO of TAT Technologies, emphasized the deal’s importance: “The expansion of our existing contract and the addition of new services to this partnership serves as a powerful testament to the strength of our brand and our proven capabilities in the APU MRO business.” Zamir highlighted the role of TAT’s “Customer First” initiative and Customer Partnership strategy in securing this contract, underscoring the company’s successful go-to-market approach. The global air cargo market has grown significantly since the COVID-19 pandemic, fueled by e-commerce and the need for rapid logistics solutions. This growth has increased demand for reliable MRO services to ensure fleet readiness, particularly for aging cargo aircraft requiring regular APU maintenance. TAT Technologies’ agreement aligns with these needs, offering global coverage and technical excellence.
Advances in predictive maintenance and digital diagnostics are transforming the MRO industry, enabling operators to anticipate issues and reduce downtime. TAT Technologies has invested in capabilities to service diverse APU platforms, including those for Boeing 737, Airbus A300, and Boeing 777 aircraft, positioning it to meet the industry’s evolving demands for efficiency and reliability.
The aerospace MRO sector is highly competitive, with companies vying for long-term contracts. TAT Technologies’ agreement with a leading cargo carrier strengthens its market position and revenue base, enhancing its reputation as a reliable MRO provider. Looking ahead, TAT is well-positioned to pursue opportunities in both commercial and defense aviation, leveraging its expertise and subsidiaries like Piedmont, Limco, and Turbochrome.
TAT Technologies’ new global APU MRO agreement, valued at US$40–55 million over five years, marks a pivotal step in its growth as a leading maintenance provider. The deal, which expands services to Boeing 737, 757, 767, Airbus A300, and Boeing 777 platforms, reflects TAT’s customer-centric strategy and technical expertise. As the aviation industry evolves, driven by air cargo growth and technological advancements, TAT is poised to play a key role in meeting global maintenance demands.
What is an APU and why is it important? Which aircraft are covered under TAT Technologies’ new agreement? What is the estimated value of the agreement? Sources: TAT Technologies, PR Newswire
TAT Technologies Expands Global Presence with Major APU MRO Agreement
Understanding the Significance of APU MRO Services
The Role of APUs in Aviation
Industry Trends Driving MRO Outsourcing
Strategic Implications for TAT Technologies
Broader Market and Industry Context
Growth in the Air Cargo Sector
Technological Advancements in APU Maintenance
Competitive Landscape and Future Outlook
Conclusion
FAQ
An Auxiliary Power Unit (APU) provides electrical power and air conditioning to aircraft when main engines are off. It is critical for ground operations and contributes to fuel efficiency and reduced emissions.
The agreement covers APU maintenance for Boeing 767, 757, 737, Airbus A300, and Boeing 777 aircraft across the cargo carrier’s global fleet.
The cumulative value of the contracts is estimated to range between US$40 million and US$55 million over the next five years.
Photo Credit: JulietRomeo
MRO & Manufacturing
ITP Aero to Acquire Aero Norway, Expanding CFM56 MRO Services
ITP Aero signs agreement to acquire Aero Norway, enhancing aftermarket capabilities for CFM56 engines and expanding its European MRO presence.
ITP Aero, a global leader in aerospace propulsion, has signed a binding agreement to acquire Aero Norway, a specialized maintenance, repair, and overhaul (MRO) provider focused on CFM56 engines. According to the company’s official announcement, the transaction is expected to close during the first half of 2026, subject to customary regulatory approvals.
The acquisition represents a significant expansion of ITP Aero’s aftermarket capabilities. By integrating Aero Norway’s facility in Stavanger, Norway, ITP Aero aims to reinforce its status as a leading independent player in the aerospace services sector. The move follows a trajectory of aggressive growth for the Spanish propulsion company since its acquisition by Bain Capital in 22.
Aero Norway operates out of a facility at Sola Airport in Stavanger, employing a workforce of over 200 skilled technicians. The company has established a reputation for high-quality engine maintenance, specifically for the CFM56 engine family, serving a global client base of airlines, lessors, and asset managers.
In its press statement, ITP Aero highlighted that the two companies possess “highly complementary strengths.” The deal combines Aero Norway’s deep expertise in engine overhaul with ITP Aero’s existing engineering capabilities and component repair infrastructure. This synergy is designed to offer a more comprehensive suite of services to the aftermarket sector.
This agreement is the latest in a series of strategic moves by ITP Aero. In 2023, the company acquired BP Aero in the United States and was recently selected to join Pratt & Whitney’s GTF MRO network. These steps are part of a broader “2030 Strategic Plan” which aims to double the size of the business and increase the global workforce by 50% by the end of the decade.
While the press release focuses on corporate synergies, the acquisition underscores a critical trend in the current aviation landscape: the extended dominance of the CFM56 engine. As new-generation engines like the LEAP and GTF face supply chain delays and durability challenges, airlines are keeping older aircraft powered by CFM56 engines in service longer than originally planned.
Industry data suggests that approximately 20,000 CFM56 engines will remain in service through 2025. Consequently, the demand for maintenance shop visits is projected to peak between 2025 and 2027. By acquiring a specialist shop like Aero Norway, ITP Aero is effectively positioning itself to capture high-value work during this period of “structural undersupply” in the narrowbody market. This “Golden Tail”, the long, profitable tail end of an engine program’s lifecycle, provides a stable revenue runway for MRO providers capable of handling heavy overhauls. The crossover point where new-generation engine shop visits outnumber CFM56 visits is not expected until later in the decade, making capacity for legacy engines a premium asset today.
Leadership from both organizations emphasized the value of combining their respective technical strengths. Eva Azoulay, CEO of ITP Aero Group, described the agreement as a key component of the company’s roadmap.
“The signing of this binding acquisition agreement marks a significant milestone in our strategic roadmap. This acquisition reinforces our ambition to become a leading independent player in the aerospace aftermarket.”
, Eva Azoulay, CEO of ITP Aero Group
Neil Russell, CEO of Aero Norway, noted that the merger would unlock synergies beneficial to their customer base.
“By combining the complementary strengths of ITP Aero and Aero Norway, we will unlock significant synergies that enhance our competitiveness and deliver even greater value to our customers.”
, Neil Russell, CEO of Aero Norway
ITP Aero reports that it has tripled its earnings since 2022 and is currently implementing a long-term business plan that spans civil, defense, and MRO segments. The company was advised on legal M&A matters regarding this transaction by Baker McKenzie.
Pending regulatory clearance, the integration of Aero Norway into the ITP Aero Group will finalize in 2026, solidifying the company’s footprint in the European MRO market.
Sources:
ITP Aero to Acquire Aero Norway, Strengthening Position in CFM56 Aftermarket
Strategic Expansion in the MRO Sector
AirPro News Analysis: The “Golden Tail” of the CFM56
Executive Commentary
Future Outlook
Photo Credit: ITP Aero
MRO & Manufacturing
AkzoNobel Invests €50 Million to Upgrade US Aerospace Coatings Facilities
AkzoNobel invests €50 million to expand and modernize aerospace coatings production in Illinois and Wisconsin, enhancing capacity and supply chain resilience.
This article is based on an official press release from AkzoNobel.
AkzoNobel has officially announced a significant investments of €50 million (approximately $52–55 million) to modernize and expand its aerospace coatings capabilities in North America. According to the company’s announcement on December 18, 2025, the project will focus on upgrading its flagship manufacturing facility in Waukegan, Illinois, and establishing a new distribution center in Pleasant Prairie, Wisconsin.
This strategic move aims to increase production capacity and shorten lead times for airline and Maintenance, Repair, and Operations (MRO) customers. By enhancing its supply chain infrastructure, AkzoNobel intends to address the growing demand for air travel and the subsequent need for advanced aerospace coatings.
The investment centers on the Waukegan facility, which currently serves as AkzoNobel’s largest aerospace coatings production site globally. The site employs approximately 200 people and houses a dedicated color center. According to the press release, the capital injection will fund the installation of new machinery and automated processes designed to handle larger batch sizes.
To further optimize operations, the company is relocating its warehousing and distribution activities to a new facility in Pleasant Prairie, Wisconsin. This relocation is intended to free up floor space at the Waukegan plant, allowing for a focus on complex, customized chemical manufacturing.
Patrick Bourguignon, Director of AkzoNobel’s Automotive and Specialty Coatings, emphasized the forward-looking nature of the investment:
“This investment will increase our comprehensive North American supply capability and solidify our position as a frontrunner in the aerospace coatings industry. Demand for air travel is expected to grow significantly… and we want to make sure our customers are able to meet that demand.”
A key component of the upgrade is the introduction of a “Rapid Service Unit” dedicated to faster turnaround times for the MRO market. The company states that the new infrastructure will include a “liquid pre-batch area” and “high-speed dissolvers” to accelerate production.
Martijn Arkesteijn, Global Operations Director for AkzoNobel Aerospace Coatings, noted that these improvements are designed to enhance flexibility for customers: “We’ll be able to provide current and future customers with even more flexibility through the delivery of large batch sizes, better responsiveness to market needs and shorter lead time for color development.”
While AkzoNobel’s announcement focuses on internal efficiency, this investment arrives during a period of intensified competition within the North American aerospace sector. Earlier in 2025, rival manufacturer PPG announced a massive $380 million investment to construct a new aerospace coatings plant in Shelby, North Carolina.
In our view, AkzoNobel’s strategy differs significantly from its competitor’s greenfield approach. Rather than building new capacity from scratch, AkzoNobel is executing a targeted upgrade of existing assets. This “efficiency war” suggests that the company is betting on agility and technology upgrades, specifically the ability to deliver custom colors and small batches quickly via its new Rapid Service Unit, rather than simply expanding raw volume output.
The upgraded facilities are also aligned with the aviation industry’s push for decarbonization. AkzoNobel highlighted that the investment supports the production of its “Basecoat/Clearcoat” systems, which are lighter than traditional coatings. Reducing paint weight is a critical factor for airlines seeking to lower fuel consumption and carbon emissions.
Furthermore, the new automated processes are expected to reduce chemical waste and solvent use. The facility upgrades will likely support the increased production of chromate-free primers, meeting stricter regulatory requirements in both the United States and the European Union.
By localizing more storage and production capacity in North America, AkzoNobel also aims to bolster supply chain resilience, addressing vulnerabilities exposed during the post-pandemic aviation recovery.
AkzoNobel Announces €50 Million Upgrade to US Aerospace Coatings Operations
Strategic Expansion in Illinois and Wisconsin
Operational Efficiency and the “Rapid Service Unit”
AirPro News Analysis: The Competitive Landscape
Sustainability and Technology Integration
Sources
Photo Credit: AkzoNobel
MRO & Manufacturing
GE Aerospace Deploys 180 Engineers for Holiday Flight Operations
GE Aerospace positions 180 Field Service Engineers in 34 countries to prevent aircraft groundings and manage winter maintenance challenges during peak holiday travel.
While millions of travelers settle in for holiday downtime, the global aviation industry enters its most critical operational window. According to AAA projections, approximately 122.4 million Americans traveled 50 miles or more from home during the 2024-2025 holiday season, with air travel seeing a projected 2.3% increase in domestic flyers. Behind this surge lies a largely invisible workforce dedicated to preventing cancellations before they happen.
According to an official press release from GE Aerospace, the company deployed 180 Field Service Engineers (FSEs) to 34 countries specifically to support Airlines customers during this peak period. These engineers are “embedded” directly with airlines and airframers, working on tarmacs and in hangars to mitigate technical risks that could otherwise ground fleets during the busiest weeks of the year.
The role of an FSE goes beyond standard maintenance; it involves proactive problem-solving under strict time constraints. GE Aerospace describes these teams as being on the front lines, ensuring that both passenger jets and cargo freighters remain operational despite the strain of high-cycle usage and winter weather.
Jordan Mayes, a Regional Leader for GE Aerospace Commercial Field Service in Western Europe and Africa, highlighted the intensity of the holiday operational tempo in the company’s statement:
“The sense of urgency is more elevated than normal… And often there are fewer hands to do the work.”
, Jordan Mayes, GE Aerospace Regional Leader
This urgency is driven not just by passenger volume, but by a booming air cargo sector. Industry data indicates that air cargo volumes saw double-digit growth in late 2024, driven by e-commerce demands and shipping disruptions in the Red Sea. Stephane Petter, a Regional Leader for Central/Eastern Europe and Central Asia, noted that the stakes for cargo are often underestimated.
“An issue with a grounded or delayed passenger aircraft might delay 350 people. With a cargo plane, thousands of parcels might be delayed, so the downstream customer impact is potentially greater.”
, Stephane Petter, GE Aerospace Regional Leader
To illustrate the impact of embedded engineers, GE Aerospace shared a specific operational success story involving Alaa Ibrahim, the Middle East regional leader. His team was monitoring a Boeing 787 Dreamliner equipped with GEnx-1B engines. The engineers identified a minor clamp repair that was necessary to keep the engine compliant. The engine was only four cycles (flights) away from a mandatory 500-cycle inspection limit. If the limit was reached without the repair, the aircraft would be grounded, a disastrous outcome during peak holiday scheduling.
Instead of waiting for a forced grounding, Ibrahim’s team identified a six-hour window in the aircraft’s schedule. They performed the inspection and repair proactively, ensuring the aircraft remained available for service without disrupting the airline’s timetable.
Beyond scheduling pressures, FSEs must contend with the physical realities of winter aviation. Industry reports highlight that “cold soak”, where an aircraft sits in freezing temperatures for extended periods, presents unique mechanical challenges. Oil can thicken, and seals can shrink or become brittle.
According to technical data regarding modern engines like the CFM LEAP, specific warm-up protocols are required to thermally stabilize the engine before takeoff power is applied. Maintenance teams often switch to lower-viscosity fluids and rigorously check breather tubes for ice accumulation. If a breather tube freezes due to condensation, it can pressurize the engine and cause seal failures.
The deployment of these 180 engineers highlights a broader shift in aviation maintenance from reactive repairs to predictive intervention. By utilizing digital tools that monitor engine health in real-time, often referred to as “Flight Deck” principles, engineers can detect vibration trends or temperature spikes before they trigger a cockpit warning.
We observe that this strategy is particularly vital during the holidays. When load factors are near 100%, airlines have zero spare aircraft to absorb a cancellation. The ability of FSEs to turn a potential “aircraft on ground” (AOG) event into a scheduled maintenance task during a layover is the difference between a smooth operation and a headline-making travel meltdown.
All Sleigh, No Delay: How Field Service Engineers Keep Holiday Fleets Airborne
The “Invisible Elves” of Aviation
Operational Wins: The GEnx-1B “Save”
Technical Challenges in Winter Operations
AirPro News Analysis: The Shift to Predictive Maintenance
Frequently Asked Questions
Sources
Photo Credit: GE Aerospace
-
Commercial Aviation6 days agoVietnam Grounds 28 Aircraft Amid Pratt & Whitney Engine Shortage
-
Business Aviation3 days agoGreg Biffle and Family Die in North Carolina Plane Crash
-
Defense & Military4 days agoFinland Unveils First F-35A Lightning II under HX Fighter Program
-
Business Aviation2 days agoBombardier Global 8000 Gains FAA Certification as Fastest Business Jet
-
Technology & Innovation15 hours agoJoby Aviation and Metropolis Develop 25 US Vertiports for eVTOL Launch
