Connect with us

Technology & Innovation

Vertical Aerospace Partners with Evolito for Valo eVTOL Propulsion

Vertical Aerospace selects Evolito as electric propulsion partner for Valo eVTOL, targeting certification in 2028 with UK and EU regulators.

Published

on

This article is based on an official press release from Vertical Aerospace.

Vertical Aerospace Selects Evolito to Power Valo eVTOL

Vertical Aerospace (NYSE: EVTL) has officially announced the selection of Evolito as the electric propulsion unit (EPU) partner for its flagship aircraft, Valo. The agreement marks a critical milestone for the Bristol-based manufacturers as it moves toward a targeted certification date in 2028. Under the terms of the partnership, Evolito will supply the axial-flux electric motors and controller units necessary to power the piloted, four-passenger electric vertical take-off and landing (eVTOL) aircraft.

This selection concludes a strategic search for a new propulsion supplier following the termination of Vertical’s previous agreement with Rolls-Royce in May 2024. By partnering with Evolito, a company spun out of YASA Motors in 2021, Vertical Aerospace is betting on lightweight, high-torque technology derived from the automotive sector to meet the rigorous demands of commercial electric flight.

Partnership Details and Technical Specifications

According to the company’s announcement, the Valo aircraft will utilize eight individual electric propulsion units provided by Evolito. These units are based on proprietary axial-flux technology, a design known for offering higher torque densities and a smaller form factor compared to traditional radial-flux motors. This weight-saving characteristic is essential for eVTOL performance, where every kilogram impacts range and payload capacity.

The two companies will collaborate closely on the certification process. The propulsion system will undergo validation with the UK Civil Aviation Authority (CAA), with concurrent validation sought from the European Union Aviation Safety Agency (EASA). Evolito has already secured Design Organization Approval (DOA) from the UK CAA as of November 2023, a mandatory regulatory standard for companies designing aircraft components.

“Evolito will supply lightweight, high-torque motors that are essential for the aircraft’s performance and safety.”

, Vertical Aerospace Press Release

From Prototype to Production

The partnership focuses specifically on the Valo, the commercial branding for the aircraft previously developed under the prototype designation VX4. The Valo is designed to transport a pilot and four passengers with a range of approximately 100 miles and a cruise speed of 150 mph, producing zero operating emissions. Vertical Aerospace currently holds a conditional pre-order book of approximately 1,500 units from major global operators, including American Airlines, Virgin Atlantic, and Japan Airlines.

Strategic Context and Financial Outlook

The selection of Evolito highlights a divergence in strategy among leading eVTOL developers. While competitors like Joby Aviation have opted for vertical integration, designing and manufacturing their motors in-house, Vertical Aerospace continues to pursue a “best-in-class supplier” model. This approach relies on integrating components from specialized aerospace partners such as Honeywell (avionics), GKN Aerospace (wings), and Leonardo (fuselage).

Advertisement

AirPro News Analysis: The Financial Runway

While the technical partnership solidifies the aircraft’s design, the financial timeline remains a critical factor for Vertical Aerospace. According to preliminary Q4 2025 financial results, the company reported approximately £69 million ($93 million) in cash and equivalents. Based on current burn rates, this provides a cash runway extending through mid-2026.

With certification targeted for 2028, the company faces a significant gap between its current funding and the commercialization of the Valo. The projected net cash outflow for 2026 is estimated at £175 million ($235 million). Consequently, the success of the Evolito partnership is not only a technical necessity but a strategic imperative to demonstrate progress and attract the capital required to bridge the gap to certification.

Frequently Asked Questions

What is the difference between the VX4 and Valo?
VX4 was the name given to the prototype aircraft used during testing phases. Valo is the official brand name for the commercial production aircraft that will be delivered to customers.

Why did Vertical Aerospace switch from Rolls-Royce?
Vertical Aerospace and Rolls-Royce mutually agreed to terminate their contract in May 2024. The shift to Evolito represents a move toward a specialized supplier focused exclusively on lightweight electric propulsion technology derived from the automotive sector.

When is the Valo expected to enter service?
Vertical Aerospace is targeting certification for the Valo aircraft in 2028, pending regulatory approval from the UK CAA and EASA.

Sources

Photo Credit: Vertical Aerospace

Continue Reading
Advertisement
Click to comment

Leave a Reply

Technology & Innovation

H55 Completes First EASA Battery Certification Tests in Aviation

H55 successfully passes all EASA-required propulsion battery certification tests, advancing electric aviation safety and production readiness.

Published

on

This article is based on an official press release from H55.

H55 Completes Aviation Industry’s First EASA-Required Battery Certification Tests

H55, the Swiss electric aviation company spun off from the Solar Impulse project, announced it has successfully completed the full sequence of propulsion battery module certification tests required by the European Union Aviation Safety Agency (EASA). The milestone, achieved on December 19, 2025, marks a significant step forward for the sector, addressing the critical safety challenge of thermal runaway containment in high-energy lithium-ion batteries.

According to the company, this is the first time in the aviation industry that a propulsion battery module has passed these rigorous, authority-witnessed tests using serial-conforming hardware. The successful campaign clears the path for H55 to submit final test reports to EASA in the first quarter of 2026, with commercial entry-into-service projected for early 2027.

Solving the Thermal Runaway Challenge

The primary hurdle for certifying electric-aviation has long been the safety of high-energy density batteries. Regulators require proof that if a single cell catches fire (a process known as thermal runaway), the failure will not propagate to neighboring cells or cause a catastrophic explosion. H55 reports that its “Adagio” battery module successfully demonstrated this containment capability under EASA supervision.

Instead of relying on heavy containment boxes, which add prohibitive weight to airframes, H55 utilizes a patented encapsulation technology. This system manages each cell individually, directing released energy and hot gases out of the module through a specific venting path. This approach prevents heat from triggering adjacent cells, effectively neutralizing the risk of propagation.

“Electric aviation has faced a single, unresolved bottleneck: proving to regulators that high-energy propulsion batteries can safely contain worst-case failures. Rather than attempting to contain a thermal runaway by shielding… H55 opts for a different approach, preventing fire propagation at the cell level.”

, André Borschberg, Co-Founder of H55

Technical Specifications and Production Readiness

The tests were conducted on H55’s Adagio battery modules, which utilize commercial 21700 lithium-ion cells, a standard cylindrical format adapted for aviation safety. The company states the modules achieve an energy density of approximately 200 Wh/kg. Crucially, the tests utilized production-grade units rather than experimental prototypes, signaling that H55’s manufacturing lines in Sion, Switzerland, are ready for mass production.

In addition to the physical battery architecture, the system includes a redundant Battery Management System (BMS) capable of monitoring the voltage, temperature, and health of every single cell in real-time.

Advertisement

AirPro News analysis

While major eVTOL developers like Joby Aviation and Beta Technologies have made significant progress with flight testing, much of the industry has operated under experimental permits or is currently navigating the earlier stages of certification. H55’s completion of the specific battery module test sequence positions it as a critical supplier for airframers who prefer to integrate certified components rather than developing proprietary battery systems. Furthermore, the move from theoretical safety models to empirical, regulator-witnessed data is expected to assist insurers in transitioning from estimated risk models to actuarial data, potentially lowering premiums for electric fleets.

Regulatory Pathway and North American Expansion

H55 holds both Design Organization Approval (DOA) and Production Organization Approval (POA) from EASA. The company is currently working with a joint Certification Management Team involving EASA and the U.S. Federal Aviation Administration (FAA). Under mutual recognition agreements, the data generated from the EASA tests is intended to support “fast-track” approval for operations in North America.

To demonstrate the technology’s reliability to the North American market, H55 has announced an “Across America” tour for 2025. The company will fly its Bristell B23 Energic, a two-seater electric trainer aircraft equipped with the Adagio system, across the United States to engage with flight schools and operators.

H55 is also establishing a new production facility in Montreal, Canada, to serve customers in the region.

Sources

Sources: PR Newswire / H55

Photo Credit: H55

Continue Reading

Technology & Innovation

Horizon Aircraft Selects RAMPF for Cavorite X7 Fuselage Production

Horizon Aircraft chooses RAMPF Composite Solutions to manufacture the fuselage of the Cavorite X7 hybrid-electric eVTOL, targeting prototype assembly in 2026.

Published

on

This article is based on an official press release from Horizon Aircraft.

Horizon Aircraft Taps RAMPF Composite Solutions for Cavorite X7 Fuselage Manufacturing

Horizon Aircraft (NASDAQ: HOVR) has officially selected RAMPF Composite Solutions to manufacture the fuselage for its full-scale Cavorite X7 hybrid-electric eVTOL. Announced on January 29, 2026, this Partnerships marks a critical transition from design to physical production for the Canadian aerospace company.

The agreement tasks RAMPF with constructing the main body of the aircraft using advanced lightweight carbon fiber and fiberglass materials. According to the company’s statement, this collaboration is a prerequisite for meeting Horizon’s aggressive timeline: assembling the full-scale prototype in 2026 and commencing flight testing in early 2027.

Strategic Localization of the Supply Chain

A key factor in this selection appears to be geographic proximity. Both Horizon Aircraft and RAMPF Composite Solutions are based in Ontario, Canada, with RAMPF operating out of Burlington. Horizon CEO Brandon Robinson noted that this localization allows for tighter quality control and real-time engineering collaboration, which are often logistical bottlenecks in aerospace development.

RAMPF Composite Solutions, a subsidiary of the German-based RAMPF Group, specializes in manufacturing complex composite parts for the aerospace and defense sectors. Their scope of work involves creating a fuselage capable of withstanding high-impact forces and harsh environmental conditions while adhering to the strict weight limits required for electric flight.

“We are thrilled to partner with Horizon Aircraft on this revolutionary new aircraft. This opportunity allows us to demonstrate how our high-performance composite materials and Manufacturing processes can push the boundaries of engineering.”

Larry Fitzgerald, CEO of RAMPF Composite Solutions

Brandon Robinson, CEO of Horizon Aircraft, emphasized the importance of RAMPF’s track record in the industry:

“RAMPF’s aerospace manufacturing capabilities are industry-leading, and we are excited to see the fuselage of our Cavorite X7 coming to life.”

Brandon Robinson, CEO of Horizon Aircraft

Advertisement

The Cavorite X7: Technical Context

The Cavorite X7 is designed to operate in the Regional Air Mobility (RAM) market rather than the intra-city air taxi market targeted by many competitors. The aircraft features a seven-seat configuration (one pilot and six passengers) and utilizes a hybrid-electric Propulsion system. This system employs a gasoline engine to generate electricity, which powers the flight fans and recharges the battery pack, effectively mitigating the range anxiety associated with pure electric platforms.

According to Horizon’s official specifications, the aircraft targets a range of approximately 800 kilometers (500 miles) and a top speed of 450 km/h (280 mph). The design utilizes a patented “Fan-in-Wing” system, where vertical lift fans are covered by sliding panels during forward flight, allowing the vehicle to fly efficiently like a traditional fixed-wing airplane.

AirPro News Analysis: Maturity of Design

The move to commission fuselage manufacturing is a significant indicator of technical maturity. In aerospace engineering, committing to hard tooling and physical production of the primary structure, the fuselage, typically signals that the outer mold line (OML) and internal structural architecture are “frozen.”

Furthermore, by securing a partner with defense and aerospace pedigree like RAMPF, Horizon is likely positioning itself to meet the rigorous Certification standards of Transport Canada and the FAA. The choice of a hybrid system also differentiates Horizon in a crowded market; while competitors struggle with battery density limits, the Cavorite X7’s hybrid architecture allows it to utilize existing aviation infrastructure immediately upon entry into service.

Financial and Operational Outlook

This manufacturing announcement follows a recent financial update from Horizon Aircraft on January 14, 2026. The company reported a cash position of over $24 million, which management states is sufficient to fund operations through 2026. Additionally, the company was recently awarded a grant of approximately $10.5 million from the Initiative for Sustainable Aviation Technology (INSAT) to support the development of all-weather flight systems.

With funding secured for the near term and the supply chain for major components now activating, Horizon appears on track to meet its goal of a flying full-scale prototype by early 2027.


Sources

Photo Credit: Horizon Aircraft

Continue Reading

Technology & Innovation

AutoFlight Completes Transition Flight for 5-Ton Matrix eVTOL

AutoFlight’s V5000 Matrix eVTOL completed a full transition flight, marking a milestone for heavy-lift electric aircraft with 10-passenger capacity.

Published

on

This article summarizes reporting by AeroTime.

AutoFlight Completes Transition Flight for 5-Ton “Matrix” eVTOL

AutoFlight has successfully completed a full transition flight with its V5000 “Matrix” aircraft, marking a significant milestone in the development of heavy-lift electric vertical takeoff and landing (eVTOL) technology. According to reporting by AeroTime, the demonstration took place at the company’s test center in Kunshan, China, around February 5, 2026.

The event represents a major technical breakthrough for the sector. While several manufacturers have achieved transition flights with smaller air taxis, the Matrix is reportedly the world’s first 5-ton class eVTOL to perform the complex maneuver. The flight profile involved a vertical takeoff, a transition to wing-borne horizontal flight, and a return to vertical mode for landing.

Breaking the Weight Barrier

The transition phase, switching from rotor-supported lift to wing-supported lift, is widely regarded as the most critical aerodynamic challenge for eVTOL aircraft. Successfully executing this phase with a heavy airframe validates the scalability of AutoFlight’s electric-aviation propulsion technology.

According to manufacturer specifications cited in the report, the V5000 “Matrix” is significantly larger than the 4-to-5-seat air taxis currently being developed by Western competitors like Joby Aviation and Archer Aviation. The aircraft features a maximum takeoff weight (MTOW) of approximately 5,700 kilograms (5.7 tons) and a wingspan of roughly 20 meters.

Technical Specifications

AutoFlight has designed the Matrix to serve both passenger and cargo-aircraft markets with a focus on regional connectivity rather than just intra-city hops. Key specifications include:

  • Capacity: Configurable for up to 10 passengers or 1,500 kilograms (1.5 tons) of cargo.
  • Propulsion: A “Lift-and-Cruise” configuration utilizing independent rotors for vertical flight and a pusher propeller for cruise.
  • Range: Projected at 250 kilometers for the all-electric version, with a hybrid variant targeting 800 to 1,500 kilometers.

Strategic Positioning in the AAM Market

The successful flight of the Matrix distinguishes AutoFlight in a crowded market. While U.S. and European firms are largely focused on the 1.5-to-2-ton class of aircraft intended for urban air mobility, AutoFlight is pursuing a “heavy-lift” strategy.

Industry data indicates that the larger capacity of the Matrix could allow for different economic models. By carrying 10 passengers instead of four, the aircraft may offer a lower cost-per-seat-mile, potentially making regional air travel more accessible. Additionally, the cargo variant targets heavy logistics and offshore supply chains, sectors that smaller eVTOLs cannot efficiently serve.

AutoFlight, founded by Tian Yu, operates R&D centers in Shanghai, Kunshan, and Augsburg, Germany. The company previously secured type Certification from the Civil Aviation Administration of China (CAAC) for its smaller “CarryAll” cargo drone in 2024.

Advertisement

AirPro News Analysis

The Shift Toward Regional Mobility

AutoFlight’s achievement with the V5000 Matrix suggests a potential pivot in the Advanced Air Mobility (AAM) sector. Until now, the dominant narrative has focused on “air taxis” replacing cars for short city trips. However, the physics and economics of a 5-ton, 10-passenger aircraft point toward a “regional shuttle” model, replacing buses or trains for inter-city travel.

We observe that by targeting the heavy-lift segment, AutoFlight is effectively creating a new vehicle class that sits between a helicopter and a regional turboprop. If the company can certify this platform, it may bypass the intense competition for urban vertiport space that smaller competitors face, instead utilizing existing regional airports and industrial hubs.

Frequently Asked Questions

What is a transition flight?
A transition flight is when an eVTOL aircraft switches from vertical flight (using rotors like a helicopter) to horizontal flight (using wings like an airplane). It is considered the most technically difficult phase of flight.

How does the Matrix compare to other eVTOLs?
Most leading competitors, such as Joby or Archer, are building aircraft in the 2-ton class with 4-5 seats. The AutoFlight Matrix is a 5-ton class aircraft designed for 10 passengers or heavy cargo.

When did this flight occur?
The demonstration was reported to have occurred around February 5, 2026.

Sources: AeroTime, AutoFlight

Photo Credit: Sergio Cecutta – SMG Consulting

Advertisement
Continue Reading
Every coffee directly supports the work behind the headlines.

Support AirPro News!

Advertisement

Follow Us

newsletter

Latest

Categories

Tags

Every coffee directly supports the work behind the headlines.

Support AirPro News!

Popular News