Space & Satellites
UniSQ and DLR Successfully Complete GAsFEx-2 Hypersonic Flight Test
UniSQ and DLR execute GAsFEx-2 mission using a cost-effective ride-along model to advance hypersonic research and data collection.
In a significant stride for international aerospace collaboration, the University of Southern Queensland (UniSQ) has successfully completed its second hypersonic flight experiment, known as GAsFEx-2 (Germany Australia Flight Experiment II). Launched on November 12, 2025, from the Esrange Space Center in Sweden, the mission utilized the German Aerospace Center’s (DLR) MAPHEUS-16 sounding rocket. This event marks a pivotal moment for the iLAuNCH Trailblazer program, demonstrating the viability of cost-effective flight testing for hypersonic technologies.
The mission saw the payload ascend to an altitude of approximately 267 kilometers, reaching well into the thermosphere. During the 14-minute flight, the experiment experienced over six minutes of microgravity, providing a pristine environment for data collection. This launch was not merely a repetition of previous efforts but a sophisticated evolution, designed to test advanced avionics and gather critical aerothermodynamic data under real-world hypersonic conditions. The success of this operation underscores the growing capability of Australian institutions to lead complex, multi-national space missions.
At the heart of this achievement is the strategic shift toward a “ride-along” operational model. By integrating the GAsFEx-2 payload into a rocket primarily tasked with materials physics research, the team effectively bypassed the prohibitive costs associated with dedicated hypersonic launches. This approach aligns with the broader goals of the iLAuNCH Trailblazer initiative, which aims to accelerate the commercialization of space research and foster a sovereign space manufacturing sector in Australia.
One of the most substantial hurdles in hypersonic research has always been the astronomical cost of flight testing. Traditionally, validating technology at speeds exceeding Mach 5 requires booking an entire launch vehicle, a financial burden that often stifles innovation for startups and universities. The GAsFEx-2 mission challenges this paradigm by proving that high-value hypersonic experiments can successfully “hitch a ride” on existing launches. According to project data, this rideshare approach can reduce testing costs by up to 95 percent compared to standalone campaigns.
The technical execution of this model required precise engineering. The GAsFEx-2 experiment was one of 21 different payloads aboard the MAPHEUS-16 rocket. It was integrated specifically into the nosecone to measure temperature and flight conditions during the high-speed ascent without interfering with the primary scientific payloads. This successful integration demonstrates a scalable pathway for frequent, affordable access to hypersonic environments, allowing researchers to iterate designs much faster than previously possible.
We see this mission as a validation of the “flight heritage” concept. For emerging aerospace companies, proving that components function in the harsh environment of space is a prerequisite for commercial adoption. By lowering the barrier to entry, the ride-along model allows entities like HyperFlight Systems to gain this crucial flight heritage without the need for massive capital investment in launch infrastructure.
“This successful flight is a key step toward making hypersonic flight testing more accessible, affordable, and reliable. By demonstrating our ability to design, manufacture and fly ride-along hypersonic payloads, we’re opening new opportunities for industry and academia.”, Professor Ingo Jahn, UniSQ Project Lead.
The GAsFEx-2 mission was a complex orchestration of international expertise. While UniSQ led the project and experiment design, the execution relied heavily on the capabilities of the German Aerospace Center (DLR). DLR’s Mobile Rocket Base (MORABA) managed the launch operations, utilizing the MAPHEUS-16 vehicle powered by two “Red Kite” solid rocket motors. This configuration allowed the rocket to carry a record payload mass of 500 kilograms, facilitating the inclusion of multiple experiments.
A critical component of the mission was the involvement of HyperFlight Systems, a Queensland-based aerospace startup established in 2022. The mission provided a platform to test their next-generation avionics hardware and data acquisition systems. Obtaining data from a real hypersonic flight is invaluable; it moves technology from a theoretical Readiness Level (TRL) to a proven status. The avionics monitored the vehicle’s performance, ensuring that the data collected was accurate and retrievable. Furthermore, the collaboration extended to the Technical University of Munich (TUM), which partnered on simulation and numerical monitoring. This relationship creates a vital feedback loop. The real-world data harvested from the flight is used to validate computer simulations and ground-based tests conducted at UniSQ’s TUSQ hypersonic wind tunnel. This “closing of the loop” ensures that future digital models are more accurate, reducing the risk for subsequent physical tests.
“This collaboration provides a platform for us to prove new avionics designs in a relevant hypersonic environment. Working alongside UniSQ and international partners strengthens Australia’s aerospace capability by building local expertise in hypersonic flight systems.”, Robert Pietsch, Principal Engineer at HyperFlight Systems.
The successful recovery of the payload and the data it contains signals a shift from pure research to commercial application. The ability to retrieve the experiment intact allows for post-flight analysis of thermal protection systems and structural integrity. This is particularly relevant for the development of reusable hypersonic vehicles, a sector that is garnering significant global attention. The improved recovery mechanisms tested during this mission ensure that sensitive instruments can be reused, further driving down costs.
Looking at the broader picture, the iLAuNCH Trailblazer program’s $180 million investment is beginning to yield tangible results. By linking academic research with industry needs, the program is cultivating a workforce skilled in advanced manufacturing and avionics. The GAsFEx-2 mission serves as a case study for how government-backed initiatives can facilitate international cooperation that benefits local industry. It positions Australian companies not just as participants, but as competent partners in the global space economy.
As we look toward the future, the frequency of these tests is expected to increase. The standardization of the ride-along interface means that future MAPHEUS launches could routinely carry Australian hypersonic experiments. This regularity is essential for rapid prototyping cycles, allowing engineers to test, fail, fix, and fly again within months rather than years. It is a methodology that accelerates innovation and ensures that safety and reliability standards keep pace with technological advancements.
The GAsFEx-2 mission represents more than just a successful rocket launch; it illustrates a sustainable model for the future of hypersonic research. By leveraging international partnerships and utilizing excess capacity on sounding rockets, UniSQ and its partners have demonstrated a pathway to reduce the financial and logistical barriers that have long hindered the sector. The data gathered from the thermosphere will now feed back into laboratories in Queensland and Munich, refining the models that will design the next generation of aerospace vehicles.
As the global demand for faster, more reliable space access grows, the ability to conduct frequent and affordable flight testing will be a decisive competitive advantage. Through the iLAuNCH Trailblazer program, Australia is securing its foothold in this high-tech domain, proving that with the right collaboration, the sky is no longer the limit.
Question: What is the primary goal of the GAsFEx-2 mission? Question: How does the “ride-along” model benefit researchers? Question: Who are the key partners involved in this project?
UniSQ and DLR Successfully Execute GAsFEx-2 Hypersonic Mission
The “Ride-Along” Model: Reducing Costs and Barriers
Strategic Partnerships and Technical Validation
Future Implications for the Aerospace Industry
Concluding Section
FAQ
Answer: The primary goal was to test advanced avionics and gather aerothermodynamic data at hypersonic speeds using a cost-effective “ride-along” model on a DLR sounding rocket.
Answer: It significantly reduces costs, by up to 95%, by allowing hypersonic experiments to hitch a ride on rockets already scheduled for other missions, rather than funding a dedicated launch.
Answer: The project is led by the University of Southern Queensland (UniSQ) in partnership with the German Aerospace Center (DLR), HyperFlight Systems, the Technical University of Munich (TUM), and supported by the iLAuNCH Trailblazer program.
Sources
Photo Credit: iLAuNCH
Space & Satellites
Sodern Opens First US Facility in Colorado for Star Tracker Production
Sodern launches its first US industrial subsidiary in Colorado, producing Auriga™ star trackers and expanding in the US aerospace market.
This article is based on an official press release from Sodern.
Sodern, a prominent French manufacturer of space equipment and a subsidiary of ArianeGroup, has officially inaugurated its first United States industrial subsidiary, Sodern America. Located in Englewood, Colorado, the new facility marks a significant strategic expansion for the European aerospace giant, representing ArianeGroup’s first industrial installation on American soil.
According to the company’s announcement, the opening of Sodern America is designed to bring the manufacturer closer to its U.S. client base and navigate domestic regulatory requirements. The move positions Sodern to compete directly with established American firms in the defense and commercial space sectors by establishing a local supply chain and production capability.
The new subsidiary is situated in the Denver metropolitan area, a region widely recognized as a major hub for the U.S. aerospace industry. The facility spans approximately 14,000 square feet (1,300 square meters) and is equipped to handle manufacturing, testing, and commercial support.
In its official statement, Sodern outlined the specific operational capabilities of the Englewood site:
By establishing this physical presence, Sodern aims to address the “dynamic and demanding” nature of the U.S. market, ensuring that critical components are available with shorter supply-chains than those requiring import from Europe.
To lead the new subsidiary, Sodern has appointed Tiphaine Louradour as the CEO of Sodern America. Louradour brings over 25 years of experience in the space industry, having held significant leadership roles at major U.S. aerospace organizations.
According to biographical details released in conjunction with the announcement, Louradour’s background includes serving as CEO of Spaceflight Inc., President of International Launch Services (ILS), and President of Global Commercial Sales at United Launch Alliance (ULA). Her appointment signals Sodern’s intent to leverage deep ties within the U.S. space industrial base to secure new contracts.
A primary driver for this expansion, as noted in the company’s strategic rationale, is compliance with U.S. regulatory frameworks. Foreign entities often face barriers when bidding for U.S. government defense and civil space contracts due to strict domestic content requirements, often referred to as “Buy American” mandates. By manufacturing the Auriga™ star tracker and conducting testing in Colorado, Sodern America intends to qualify for sensitive programs that are typically restricted to U.S. entities. This local status allows the company to bypass previous regulatory hurdles and compete on equal footing with domestic manufacturers.
The entry of Sodern America into the Colorado aerospace cluster places it in direct proximity to some of its fiercest competitors. The Denver area is home to Blue Canyon Technologies (a subsidiary of RTX), which is a market leader in small satellite components and star trackers. Additionally, Ball Aerospace (now part of BAE Systems Space & Mission Systems) and Honeywell Aerospace maintain significant operations in the region.
Sodern is already a supplier for major U.S. stakeholders, including NASA, providing instruments for the InSight Mars mission and the Europa Clipper, and the OneWeb constellation. However, establishing a manufacturing foothold suggests a shift from being an exporter to becoming an embedded part of the U.S. supply chain. This move is likely to intensify competition in the optical sensors market, particularly as satellite constellations continue to scale.
What is Sodern America? Where is the new facility located? What will be manufactured at the new site? Who is the CEO of Sodern America? Why did Sodern open a U.S. factory?
Facility Capabilities and Strategic Location
Leadership and Market Objectives
Navigating “Buy American” Regulations
AirPro News Analysis: The Competitive Landscape
Frequently Asked Questions
Sodern America is the new U.S. subsidiary of the French space equipment manufacturer Sodern. It is the company’s first industrial facility in the United States.
The facility is located in Englewood, Colorado, within the Denver metropolitan area.
The site will feature a production line for Auriga™ star trackers and testing facilities for Hydra™ star trackers.
Tiphaine Louradour, a veteran aerospace executive with previous leadership roles at Spaceflight Inc. and ULA, has been appointed as CEO.
The expansion aims to bypass “Buy American” regulatory hurdles, shorten supply chains for U.S. clients, and allow the company to bid on U.S. government defense contracts.Sources
Photo Credit: Sodern
Space & Satellites
Isar Aerospace Opens Acceptance Test Facility at Esrange Space Center
Isar Aerospace launches a new test site at Esrange, Sweden, to support industrial-scale production of Spectrum rocket ahead of March 2026 flight.
This article is based on an official press release from Isar Aerospace.
Isar Aerospace has officially inaugurated a new acceptance test facility at the Esrange Space Center in Kiruna, Sweden. Announced on February 4, 2026, the opening marks a significant transition for the Munich-based launch provider as it shifts focus from prototype development to the industrial-scale production of its Spectrum launch vehicle.
The new site is purpose-built to verify the flight readiness of manufactured hardware, a critical step in ensuring high-cadence Launch operations. According to the company, the facility is designed to test over 30 Aquila engines per month, alongside fully integrated rocket stages. This infrastructure expansion comes just weeks before Isar Aerospace attempts its second Test-Flights, mission “Onward and Upward,” scheduled to First-Flight from Andøya Spaceport in Norway in March 2026.
Unlike development testing, which focuses on validating design concepts, acceptance testing is the final quality control step before hardware is shipped to the launch pad. Isar Aerospace stated in their press release that the new facility is specifically engineered to remove production bottlenecks. By securing dedicated infrastructure for acceptance testing, the company aims to ensure that every engine and stage coming off the assembly line is immediately qualified for flight.
The facility operates alongside Isar’s existing vertical test stand (VTS-2) at Esrange, which has been utilized for development testing since 2019. The addition of the new site allows for parallel operations: R&D can continue on the vertical stand while the new facility handles the volume required for serial production.
“Scaling reliable access to space requires not only advanced launch vehicle design but also the right infrastructure to support rapid development and production. With our second test facility at Esrange, we are unlocking new capabilities and accelerating our progress.”
, Daniel Metzler, CEO & Co-Founder, Isar Aerospace
The new infrastructure significantly increases the company’s throughput. Isar Aerospace reports that the site is equipped to handle the acceptance testing of more than 30 Aquila engines monthly. Furthermore, the site supports integrated stage testing, allowing engineers to verify the entire rocket stage as a cohesive unit before it leaves Sweden.
The opening of this facility highlights the intensifying race among European launch Startups to provide sovereign access to space. Isar Aerospace is competing with peers such as Rocket Factory Augsburg (RFA) and Orbex to fill the gap in Europe’s launch market. By vertically integrating its testing capabilities, Isar Aerospace reduces reliance on shared facilities, potentially giving it an advantage in scheduling and launch cadence. Swedish Space Corporation (SSC), which operates Esrange, emphasized the importance of this Partnerships for the broader European ecosystem.
“This new facility strengthens Europe’s path toward scalable and reliable access to space… Together, we are building the infrastructure that will enable a new generation of launch services.”
, Mats Tyni, Director of Business Development, SSC
The distinction between “development” and “acceptance” testing is often overlooked, yet it is the primary hurdle for launch companies moving from a single successful flight to a commercial service. In our view, Isar Aerospace’s Investments in a high-volume acceptance facility signals confidence in their hardware design. It suggests the company believes the Aquila engine design is mature enough to freeze for mass production. If the upcoming March 2026 flight is successful, this infrastructure will be the key enabler that allows them to fulfill their backlog without the testing bottlenecks that have historically plagued the industry.
The facility inauguration serves as a prelude to Isar Aerospace’s next major milestone. The company confirmed that its second test flight, dubbed “Onward and Upward,” is targeted for a launch window in March 2026. This mission will utilize the Spectrum vehicle, a two-stage rocket designed to carry up to 1,000 kg to Low Earth Orbit (LEO).
The Spectrum vehicle relies on the Aquila engines tested at Esrange, which utilize Liquid Oxygen (LOX) and Propane. Following a flight termination during the first test launch in March 2025, the company has conducted extensive hot-fire tests to validate system corrections. The new acceptance facility will likely play a central role in qualifying engines for vehicles 3 through 7, which are currently planned for concurrent production.
Industrializing Launch Capabilities
Capacity and Specs
Strategic Context: The Race for European Sovereignty
AirPro News Analysis
Upcoming Mission: “Onward and Upward”
Sources
Photo Credit: Isar Aerospace
Space & Satellites
SpaceX Crew-12 Arrives in Florida for February ISS Launch
Crew-12 astronauts from NASA, ESA, and Roscosmos arrive at Kennedy Space Center ahead of their February 11 launch to the ISS aboard SpaceX Crew Dragon.
This article is based on an official press release from NASA and additional mission data from ESA and Roscosmos.
The four-member crew of the SpaceX Crew-12 mission arrived at the Kennedy Space Center (KSC) in Florida on Friday, February 6, 2026, marking the final operational milestone before their scheduled Launch to the International Space Station (ISS). Flying in from the Johnson Space Center in Houston, the international team of astronauts landed at the Launch and Landing Facility to commence final preparations and mandatory quarantine protocols.
According to NASA, the mission is targeted to lift off on Wednesday, February 11, 2026, at 6:01 a.m. EST. The crew will ride aboard the SpaceX Crew Dragon spacecraft named Freedom, propelled by a Falcon 9 rocket from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station. This flight represents a continuation of the Commercial Crew Program’s efforts to maintain a continuous human presence in low-Earth orbit.
The arrival of Crew-12 is operationally critical for the ISS, which has recently functioned with a reduced staff due to schedule shifts and medical evaluations. The successful docking of Crew-12, targeted for approximately 10:30 a.m. EST on February 12, will restore the orbiting laboratory to its full complement of seven astronauts, stabilizing maintenance rosters and scientific output for Expeditions 74 and 75.
The Crew-12 mission brings together representatives from three major Space-Agencies: NASA, the European Space Agency (ESA), and Roscosmos. The mission duration is expected to last approximately nine months, during which the crew will conduct hundreds of scientific experiments and technology demonstrations.
In an official statement regarding the mission’s scope, NASA noted:
“Crew-12 will conduct scientific investigations and technology demonstrations to help prepare humans for future exploration missions to the Moon and Mars, as well as benefit people on Earth.”
Following the launch on February 11, the crew will execute a 28-hour rendezvous profile before docking with the ISS. Once aboard, they will overlap briefly with the departing crew before settling into a long-duration stay focused on deep space biology, material science, and Earth observation.
The manifest for Crew-12 features a blend of veteran leadership and rookie talent, including two American astronauts, one French astronaut, and one Russian cosmonaut. Leading the mission is veteran astronaut Jessica Meir. Meir previously served on Expedition 61/62 in 2019 and 2020, where she gained global recognition for participating in the first all-female spacewalk alongside Christina Koch. A dual American-Swedish citizen, Meir holds a Doctorate in Marine Biology from the Scripps Institution of Oceanography. Her scientific background includes extensive research on animal physiology in extreme environments, such as emperor penguins in Antarctica. As Mission Commander, she is responsible for all phases of flight, from launch to re-entry.
Seated alongside Meir is mission pilot Jack Hathaway, making his first trip to space. Selected as a NASA astronaut candidate in 2021, Hathaway brings extensive aviation experience as a Commander in the U.S. Navy. He is a distinguished graduate of the Empire Test Pilots’ School and has logged over 2,500 flight hours in more than 30 types of aircraft. His role on Crew-12 involves monitoring vehicle systems and performance during the dynamic phases of flight.
Representing the European Space Agency is Mission Specialist Sophie Adenot. A Lieutenant Colonel in the French Air and Space Force and a helicopter test pilot, Adenot was selected as an ESA astronaut in 2022. She becomes the second French woman to fly to space, following Claudie Haigneré’s mission in 1996. Adenot’s individual mission is designated “Epsilon.”
Commenting on the significance of her role, Adenot stated:
“With this Epsilon mission, France and Europe are contributing to a global endeavor. Space exploration connects science, economy, technology, education, and diplomacy.”
Rounding out the crew is Roscosmos cosmonaut Andrey Fedyaev. This flight marks his second journey to the ISS, having previously flown on the SpaceX Crew-6 mission from March to September 2023. Fedyaev’s inclusion in the crew is notable for making him the first Russian cosmonaut to fly twice on a SpaceX Dragon vehicle. He is tasked with monitoring launch and re-entry phases and managing cargo operations aboard the station.
Upon their arrival in Florida, the crew immediately entered the Neil A. Armstrong Operations and Checkout Building to begin the standard pre-flight quarantine. This health stabilization protocol, a legacy of the Apollo era, is designed to ensure that no viral or bacterial illnesses are transported to the closed environment of the ISS.
The composition of Crew-12 underwent a significant adjustment late in the training flow. In December 2025, Roscosmos cosmonaut Oleg Artemyev was removed from the manifest and replaced by Andrey Fedyaev. While Roscosmos officially cited a “transition to other work” as the reason for the swap, industry reports have suggested the change may have been influenced by internal Regulations. Fedyaev’s previous experience on the Crew-6 mission allowed him to step into the role with a compressed training timeline, ensuring the mission schedule remained on track.
The integration of Andrey Fedyaev into Crew-12 highlights the increasing maturity and interoperability of the Commercial Crew Program. In previous eras of spaceflight, a crew change less than three months before launch could have resulted in significant delays. However, the standardization of the SpaceX Crew Dragon platform allows veteran flyers like Fedyaev to retain currency and step into rotation with reduced lead time. Furthermore, the launch of Crew-12 is pivotal for ISS operations. The station has faced a period of flux regarding crew numbers, and the return to a seven-person staff is essential for clearing the backlog of maintenance tasks and maximizing the scientific return of the orbiting laboratory before the transition to commercial space stations begins later in the decade.
Sources:
Crew-12 Astronauts Touch Down in Florida Ahead of February 11 Launch
Mission Profile and Timeline
Meet the Crew-12 Astronauts
Commander Jessica Meir (NASA)
Pilot Jack Hathaway (NASA)
Mission Specialist Sophie Adenot (ESA)
Mission Specialist Andrey Fedyaev (Roscosmos)
Operational Context and Late Adjustments
Late Crew Change
AirPro News Analysis
Photo Credit: NASA
-
Commercial Aviation4 days agoAirbus Nears Launch of Stretched A350 Variant to Compete with Boeing 777X
-
Aircraft Orders & Deliveries4 days agoHarbor Diversified Sells Air Wisconsin Assets for $113.2 Million
-
Defense & Military2 days agoApogee Aerospace Signs $420M Deal for Albatross Amphibious Aircraft
-
MRO & Manufacturing5 days agoFedEx A300 Nose Gear Collapse During Maintenance at BWI Airport
-
Defense & Military5 days agoAirbus and Singapore Complete Manned-Unmanned Teaming Flight Trials
